FROM RESEARCH TO INDUSTRY

Sparse matrix factorization method and its applications in astrophysics

Jérôme Bobin

joint work with I. El Hamzaoui, A. Picquenot, F.Acero and C.Kervazo Laboratoire CosmoStat - CEA/Irfu, France

Analysing multispectral data

Different scientific fields but ...

common problems: mixtures of elementary signals or sources

The underlying mixture model

Blind Source Separation: Estimation both A and S from X only

This is an ill-posed matrix factorization problem

Non-negative Matrix Factorization, Dictionary Learning, ...

Sparse signal modeling

Prior information on S and/or A

Statistical independence, non-negativity, etc.

Sparse signal modeling

Zibulevsky01, Cichocki06, Bobin07

Wavelet transform for spherical data

Sparse Matrix Factorisation

Generalized Morphological Component Analysis (GMCA):

- S-BSS with redundant sparse representations
- Iterative soft/hard thresholding algorithm
- Thresholding strategy, robustness to Gaussian noise/local stationary points
- No parameters to tune

Bobin, Starck, Fadili, and Moudden, Sparsity, Morphological Diversity and Blind Source Separation, IEEE Trans. on Image Processing, Vol 16, No 11, pp 2662 - 2674, 2007. Bobin, Starck, Fadili, and Moudden, Blind Source Separation: The Sparsity Revolution, Advances in Imaging and Electron Physics, Vol 152, pp 221 -- 306, 2008.

Beyond standard models

- The global linear mixture does not hold true

Local-GMCA: local/multiscale mixture model, handles spectral variabilities

Bobin J., Sureau F., Starck, CMB reconstruction from the WMAP and Planck PR2 data, A&A, 2016

- Galactic components are partially correlated

AMCA: robustness w/r to partial correlations

Bobin J., et al., IEEE Tr. on signal processing, 2015

- Many point sources as outliers

rGMCA: robustness w/r to outliers, based on morphological diversity

Chenot, et al., SIAM Imaging Sciences, 2018

- Accounting for sparse parametric non-linear physical models

premise: include astrophysical models for a more precise estimation of the galactic sources Dust

Irfan, et al., MNRAS, 2018

Analyzing X-ray data in high-energy astrophysics

CasA with Chandra 1 Ms observation ~1 billions counts !!

- Ejecta thermal emission gives insight on :
 - Individual elements distribution
 - Morphology, asymmetries
 - Velocities

... but the data follow a Poisson distribution

- 50

40

- 30

- 20

- 10

- Each image is built from a sequence of events (photons)

- The measurements follow a Poisson distribution

$$\mathcal{P}(\mathbf{X}_i[t]|[\mathbf{AS}]_i[t]) = \frac{e^{-[\mathbf{AS}]_i[t]} [\mathbf{AS}]_i[t]^{\mathbf{X}_i[t]}}{\mathbf{X}_i[t]!}$$

- The mixture model is valid only on average $[\mathbf{AS}]_i[t] = \mathbb{E} \{ \mathbf{X}_i[t] \}$

- The noise is data-dependent and larger for features with larger amplitudes, which is likely to hamper sparse BSS methods:

$$\operatorname{Var}\left\{\mathbf{X}_{i}[t]\right\} = [\mathbf{AS}]_{i}[t]$$

BSS: switching from Gaussian to Poisson statistics

Extending sparse BSS to account for the Poisson statistics of the measurements

$$\min_{\mathbf{A}\in\mathcal{C},\mathbf{S}\geq 0} \|\mathbf{\Lambda}\odot\mathbf{S}\mathbf{\Phi}^T\|_{\ell_1} + \mathcal{L}\left(\mathbf{X}|\mathbf{A},\mathbf{S}\right)$$
$$\underbrace{\mathcal{L}\left(\mathbf{X}|\mathbf{A},\mathbf{S}\right) = \mathbf{A}\mathbf{S} - \mathbf{X}\odot\log(\mathbf{A}\mathbf{S})}_{\text{Poisson neg-loglikelihood}}$$

- Multi-convex problem with non-smooth data fidelity term

standard methods (e.g. PALM, BCD) are not applicable

- The curvature of the data fidelity term soars at the vicinity of 0 $\propto 1 \oslash (\mathbf{AS} \odot \mathbf{AS})$

- How to choose the regularisation parameters Λ ?

Building a smooth approximation

$$\min_{\mathbf{A}\in\mathcal{C},\alpha\Phi\geq0} \|\mathbf{\Lambda}\odot\alpha\|_{\ell_1} + \mathcal{L}_{\mu}\left(\mathbf{X}|\mathbf{A},\alpha\Phi\right)$$

Smooth approximation

- Makes use of Nesterov's smoothing to build a smooth approximation

$$\mathcal{L}_{\mu}(\mathbf{X}|\mathbf{Y}) = \inf_{\mathbf{U}} \langle \mathbf{Y}, \mathbf{U} \rangle - \mathcal{L}^{*}(\mathbf{X}|\mathbf{U}) - \mu g(\mathbf{U}),$$

Dual of \mathcal{L} Strongly convex
proximity term

$$- \operatorname{Smooth} \operatorname{approximation} \operatorname{with} \operatorname{Lipschitz} \operatorname{gradient}$$

$$\nabla \mathcal{L}_{\mu}(\mathbf{X}|\mathbf{Y}) = \frac{1}{2\mu} (\mathbf{Y} + \mu) \odot \left[1 - \sqrt{1 - 4\mu(\mathbf{Y} - \mathbf{X})} \oslash (\mathbf{Y} + \mu)^{2} \right]$$

The pGMCA algorithm

The pGMCA builds upon a Block-Coordinate Descent algorithm:

Initialization:

- i) Starts from the solution given by GMCA
- ii) Re-weighted I1 parameters derived from the GMCA solution

$$\min_{\alpha} \left\| \mathbf{\Lambda} \odot \alpha \right\|_{\ell_{1}} + \iota_{K^{+}} \left(\alpha \mathbf{\Phi} \right) + \mathcal{L}_{\mu} \left(\mathbf{X} | \mathbf{A}, \alpha \mathbf{\Phi} \right)$$

Solved using a G-FBS implementation (Raguet et al. 2011)

$$\min_{\mathbf{A}} \iota_{\mathcal{C}} \left(\mathbf{A} \right) + \mathcal{L}_{\mu} \left(\mathbf{X} | \mathbf{A}, \mathbf{S} \right)$$

Positivity and oblique constraint

Solved using a FISTA implementation

Bobin et al, submitted 2019.

Choosing the regularisation parameter

Standard heuristic in the case of additive Gaussian noise:

$$\alpha^{+} = \operatorname{Prox}_{\gamma \parallel \mathbf{\Lambda} \odot \cdot \parallel_{\ell_{1}}} \left(\alpha^{-} - \gamma \mathbf{A}^{T} \nabla \mathcal{L}_{\mu} (\mathbf{X} | \alpha^{-}) \mathbf{\Phi}^{T} \right)$$
$$\lambda_{i} \propto \sigma \left\{ \gamma \left[\mathbf{A}^{T} \nabla \mathcal{L}_{\mu} (\mathbf{X} | \alpha^{-}) \mathbf{\Phi}^{T} \right]_{i} \right\}$$

Noise term that propagates through the gradient descent

For $\mu \sim \langle X \rangle$ the exact same strategy can be used thanks to smoothing

Synthetic Chandra X-ray data with a 3 sources model:

- synchrotron emission
- 2 redshifted iron sources

GMCA

HALS

pGMCA

Scenario: in supernovae remnants, the synchrotron emission is a background w.r.t atomic components

The goal is to evaluate the robustness of the separation process w.r.t to the background level

Application to the Chandra data

Application to the Chandra data

March, 21th 2019

The Perseus cluster

X-ray filaments have~50-100 counts buried under 10⁴ counts Finding features with contrast < 1%

First time detection of X-ray filaments

Filaments features would be impossible to find without a unsupervised approach

Flexible framework to tackle: More generic statistical models Account for Poisson statistics made easier thanks to Nesterov's smoothing + BCD Effective on real-world data, opens a new way to analyse X-ray data

> *pyGMCALab: <u>https://github.com/jbobin/pyGMCALab</u>* Also visit the lab's website <u>www.cosmostat.org</u>