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▪ Deep learning (in general)

▪ Optimization Algorithm – Stochastic Gradiend Descent→ local optimum

DEEP LEARNING & SGD
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‘WIDE MINIMA’ PHENOMENON 

▪ “The wider the minimum, the better the performance on the test set”

Hochreiter & Schmidhuber, 1997

Current folklore: 

▪ Gradient Descent (full batch) overfits: 

smaller minibatch → better performance

(Keskar et al., 2017)

▪ SGD ‘prefers’ wide minima 

(Jastrzebski et al.,2017)
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Why would SGD ‘prefer’ wide minima?

▪ Something must be going on with the “noise”

▪ Additional assumption:            has finite variance

(Mandt et al.’16, Jastrzebski et al.’17, Zhu et al.’18 …)

▪ Central Limit Theorem (CLT) →

MAIN QUESTION (THAT WE ASK IN THIS STUDY)
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DIFFUSION REPRESENTATION

▪ With the Gaussian assumption:

▪ Small step-size → the stochastic differential equation (SDE):

▪ We can now use all the nice + rich theory of SDEs! 

▪ Jastrzebski et al. → the width is determined by:  

▪ They are not the only ones…
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SOME ISSUES
▪ The results are based on the invariant distribution: 

requires exp(O(p)) many iterations → doesn’t reflect the practice

▪ Confliction with metastability results:

“Transition time” ≈ exp(H) x poly(|m1|)

▪ How accurate is the Gaussianity assumption?
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Can we find a better assumption?



GENERALIZED CLT
▪ Go back to:

▪ In many domains the “finite variance” might not hold 

▪ Extended CLT:            converges → heavy-tailed α-stable r.v.
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NEW FRAMEWORK + IMPLICATIONS

▪ Proposed assumption:

▪ The resulting SDE:

▪ Metastability: (Pavlyukevich’07)

Transition time - does not depend on H,

- poly(|m1|, α)
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NEW FRAMEWORK + IMPLICATIONS

▪ Proposed assumption:

▪ The resulting SDE:

▪ BIG QUESTION: is SGD noise really α-stable? 
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EMPIRICAL STUDY
▪ Aim: estimate α→ if α =2 the noise is Gaussian

We have tested different (in the paper)

1) datasets (MNIST, CIFAR10, CIFAR100)

2) architectures (fully connected, convolutional)

3) loss functions (cross entropy, linear hinge)

4) network sizes (width, depth)

5) minibatch sizes

▪ In this talk: fully connected + cross-entropy
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NETWORK SIZE
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MINIBATCH SIZE
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Depth: 2

• Similar results for other depths

• The behavior doesn’t become Gaussian 



CURIOUS JUMPS
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MNIST + Fully Connected



CONCLUSIONS 

▪ SGD noise is highly non-Gaussian

▪ α-stable assumption seems more appropriate

▪ Strong interaction between geometry & dynamics

▪ Existing theory: more light on the wide minima phenomenon

▪ Supports: SGD crosses barriers in the initial phase
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THANK YOU FOR YOU ATTENTION!

Any questions?


