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DEEP LEARNING & SGD

Deep learning (in general)

w” = arg min{f(w) 2 %Z;l £ (W)}

wERP

Optimization Algorithm — Stochastic Gradiend Descent =2 local optimum

Wit1 = Wi — NV (W) —— Vfi(w E V@ (w
stochastic ZEQk
gradient minibatch

Assumption: Stochastic gradients are unbiased



‘WIDE MINIMA" PHENOMENON

“The wider the minimum, the better the performance on the test set”
Hochreiter & Schmidhuber, 1997

Current folklore:

Gradient Descent (full batch) overfits: T

smaller minibatch = better performance

(Keskar et al., 2017)

SGD ‘prefers’ wide minima

(Jastrzebski et al.,2017)



MAIN QUESTION (tHat we ask in THiS sTUDY)

Why would SGD ‘prefer’ wide minima?

Something must be going on with the “noise”

Uk(w) 2 [Vfiutw) = V5 w)] = 5 37 [5O(w) ~ Vf(w)

1€

Zero-mean and i.i.d. random variables
(unbiasedness)

Additional assumption: Ui (W) has finite variance

(Mandt et al.’16, Jastrzebski et al.’17, Zhu et al.’18 ...)

Central Limit Theorem (CLT) > Ui (w) ~ N (0,0°T)



DIFFUSION REPRESENTATION

With the Gaussian assumption:

Wii1 = Wi — 0V f(Wi) + ViV 102 Z

Uk(W) ~ N(0,02I)

Small step-size = the stochastic differential equation (SDE):

th = —Vf(Wt)dt + \/ 770'2dBt

We can now use all the nice + rich theory of SDEs!
Jastrzebski et al. 2 the width is determined by: 7)/0

They are not the only ones...



SOME ISSUES

The results are based on the invariant distribution:

requires exp(O(p)) many iterations =2 doesn’t reflect the practice

Confliction with metastability results:

“Transition time” = exp(H) x poly(|m, |)
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GENERALIZED CLT

Go back to:
Uk(w) 2 [Vfiutw) = V5 w)] = 5 37 [5O(w) ~ V(w)

1€

Zero-mean and i.i.d. random variables

In many domains the “finite variance” might not hold

Extended CLT: Ui (W) converges = heavy-tailed a-stable r.v.

Gaussian when a=2
Infinite variance when a#2




NEW FRAMEWORK + IMPLICATIONS

Proposed assumption: Uy (w) ~ SaS(c(w))

40

The resulting SDE: 20}
.. Ol
dw; = =V f(wy)dt + nl@D/9(dLY) T 5|
40}F
-60

0 500 1000 1500 2000 2500 3000

Metastability: (Paviyukevich’07)

Transition tfime - does not depend on H,

N pOIY(lm] |I a)




NEW FRAMEWORK + IMPLICATIONS

Proposed assumption: Ug(w) ~ SaS(o(w))

The resulting SDE:

5 O RS ‘ T il
dw; = =V f(wy)dt + 77(0‘_1)/0‘0 S ¥ \LJ\J i o=151
40} o0

Lévy Motion 60 | | | | ‘
(discon‘rinuous) 0 500 1000 1500 2000 2500 3000

t
BIG QUESTION: is SGD noise really a-stable?

N
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EMPIRICAL STUDY

Aim: estimate o =2 if o =2 the noise is Gaussian
We have tested different (in the paper)
datasets (MNIST, CIFAR10, CIFAR100)
architectures (fully connected, convolutional)
loss functions (cross entropy, linear hinge)
network sizes (width, depth)

minibatch sizes

In this talk: fully connected + cross-entropy
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MINIBATCH SIZE

1.6
Depi‘h: 2
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Mini-batch size

* Similar results for other depths

* The behavior doesn’t become Gaussian



Loss
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CONCLUSIONS

SGD noise is highly non-Gaussian

o-stable assumption seems more appropriate

Strong interaction between geometry & dynamics

Existing theory: more light on the wide minima phenomenon

Supports: SGD crosses barriers in the initial phase



THANK YOU FOR YOU ATTENTION!

Any questions?



