

Umut Şimşekli

LTCI, Télécom ParisTech, Université Paris-Saclay

A TAIL-INDEX ANALYSIS OF STOCHASTIC GRADIENT NOISE IN DEEP NEURAL NETWORKS

Artificial Intelligence and Physics March 21, 2019

CREDITS

Joint work with

- Levent Sagun EPFL
- Mert Gürbüzbalaban Rutgers University

Paper is on arxiv:

https://arxiv.org/pdf/1901.06053.pdf

DEEP LEARNING & SGD

Deep learning (in general)

 $\mathbf{w}^{\star} = \underset{\mathbf{w} \in \mathbb{R}^{p}}{\operatorname{arg\,min}} \left\{ \begin{array}{l} f(\mathbf{w}) \triangleq \frac{1}{n} \sum_{i=1}^{n} f^{(i)}(\mathbf{w}) \right\} \\ \underset{\text{on-convex}}{\operatorname{non-convex}} \\ \underset{\text{cost func.}}{\operatorname{data points}} \end{array} \right\}$ which one is better?

Optimization Algorithm – Stochastic Gradiend Descent – local optimum

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \eta \nabla \tilde{f}_k(\mathbf{w}_k) \longrightarrow \nabla \tilde{f}_k(\mathbf{w}) \triangleq \frac{1}{b} \sum_{i \in \Omega_k} \nabla f^{(i)}(\mathbf{w})$$
step-size stochastic
(learning rate) gradient
Size minibatch

Assumption: Stochastic gradients are **unbiased**

WIDE MINIMA' PHENOMENON

"The wider the minimum, the better the performance on the test set"

Hochreiter & Schmidhuber, 1997

Current folklore:

Gradient Descent (full batch) overfits:
 smaller minibatch → better performance

(Keskar et al., 2017)

SGD 'prefers' wide minima

(Jastrzebski et al.,2017)

MAIN QUESTION (THAT WE ASK IN THIS STUDY)

Why would SGD 'prefer' wide minima?

Something must be going on with the "noise"

$$U_{k}(\mathbf{w}) \triangleq \left[\nabla \tilde{f}_{k}(\mathbf{w}) - \nabla f(\mathbf{w})\right] = \frac{1}{b} \sum_{i \in \Omega_{k}} \left[\nabla f^{(i)}(\mathbf{w}) - \nabla f(\mathbf{w})\right]$$
stochastic gradient noise
$$\operatorname{zero-mean and i.i.d. random variables}_{(unbiasedness)}$$

Additional assumption: $U_k(\mathbf{w})$ has finite variance

(Mandt et al.'16, Jastrzebski et al.'17, Zhu et al.'18 ...)

• Central Limit Theorem (CLT) $\rightarrow U_k(\mathbf{w}) \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

DIFFUSION REPRESENTATION

 $U_k(\mathbf{w}) \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

With the Gaussian assumption:

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \eta
abla f(\mathbf{w}_k) + \sqrt{\eta} \sqrt{\eta \sigma^2} Z_k$$
 standard random

tandard Gaussian andom variable

• Small step-size \rightarrow the stochastic differential equation (SDE):

 $\mathrm{d}\mathbf{w}_t = abla f(\mathbf{w}_t)\mathrm{d}t + \sqrt{\eta\sigma^2}\mathrm{d}\mathbf{B}_t$ Brownian Motion

- We can now use all the nice + rich theory of SDEs!
- Jastrzebski et al. ightarrow the width is determined by: η/b
- They are not the only ones...

SOME ISSUES

The results are based on the invariant distribution:

requires exp(O(p)) many iterations \rightarrow doesn't reflect the practice

Confliction with metastability results:

"Transition time" $\approx \exp(H) \times poly(|m_1|)$

How accurate is the Gaussianity assumption?

Can we find a better assumption?

GENERALIZED CLT

Go back to:

$$U_k(\mathbf{w}) \triangleq \left[\nabla \tilde{f}_k(\mathbf{w}) - \nabla f(\mathbf{w})\right] = \frac{1}{b} \sum_{i \in \Omega_k} \left[\nabla f^{(i)}(\mathbf{w}) - \nabla f(\mathbf{w})\right]$$

stochastic gradient noise

- In many domains the "finite variance" might not hold
- Extended CLT: $U_k(\mathbf{w})$ converges \rightarrow heavy-tailed α -stable r.v.

NEW FRAMEWORK + IMPLICATIONS

Proposed assumption: $U_k(\mathbf{w}) \sim \mathcal{S} lpha \mathcal{S}(\sigma(\mathbf{w}))$

NEW FRAMEWORK + IMPLICATIONS

• Proposed assumption: $U_k(\mathbf{w}) \sim \mathcal{S} lpha \mathcal{S}(\sigma(\mathbf{w}))$

BIG QUESTION: is SGD noise really α-stable?

EMPIRICAL STUDY

• Aim: estimate $\alpha \rightarrow$ if $\alpha = 2$ the noise is Gaussian

We have tested different (in the paper)

- 1) datasets (MNIST, CIFAR10, CIFAR100)
- 2) architectures (fully connected, convolutional)
- 3) loss functions (cross entropy, linear hinge)
- 4) network sizes (width, depth)
- 5) minibatch sizes

In this talk: fully connected + cross-entropy

NETWORK SIZE

MNIST

CIFAR10

MINIBATCH SIZE

- Similar results for other depths
- The behavior doesn't become Gaussian

CURIOUS JUMPS

MNIST + Fully Connected

CONCLUSIONS

SGD noise is highly non-Gaussian

α-stable assumption seems more appropriate

Strong interaction between geometry & dynamics

• Existing **theory**: more light on the **wide minima** phenomenon

Supports: SGD crosses barriers in the initial phase

THANK YOU FOR YOU ATTENTION!

Any questions?