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ArXiv physics:astro-ph and 
physics:hep-ex papers with machine 
learning, deep learning or neural 
network in the title or abstract

HEP is in ML
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≈ 1 %
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The simulation pipeline 

Cranmer NIPS’16
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Few parameters from 
theory
Interaction with a 
very complex 
apparatus

https://channel9.msdn.com/Events/Neural-Information-Processing-Systems-Conference/Neural-Information-Processing-Systems-Conference-NIPS-2016/Machine-Learning-and-Likelihood-Free-Inference-in-Particle-Physics
https://channel9.msdn.com/Events/Neural-Information-Processing-Systems-Conference/Neural-Information-Processing-Systems-Conference-NIPS-2016/Machine-Learning-and-Likelihood-Free-Inference-in-Particle-Physics


• Likelihood-free inference
• Likelihood function p(x|θ)  intractable

• Simulator can generate samples, at a cost

• Workhorse: binary classification
• Signal vs Background

• Principled wrt physics objectives

Analysis: discovery and measurement
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• Likelihood function p(x|θ)  intractable

• Simulator can generate samples, at a cost
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• Principled wrt physics objectives
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• Likelihood-free inference
• Likelihood function p(x|θ)  intractable

• Simulator can generate samples, at a cost

• Workhorse: binary classification
• Signal vs Background

• Principled wrt physics objectives

• Surprisingly hard
• “Dense and full rank”: dimension of data manifold 

=  dimension of feature space  

• Needle in a haystack

Analysis: discovery and measurement
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• Selection in the feature space: select the 
events that could be signal and count: N  the 
only observable

• Does this number significantly exceed the 
expected number of events predicted by a 
background-only hypothesis? 

• Test μ = 0 against μ > 0

Discovery 
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Investigate the compliance of the data with the standard model:

statistical testing on a Poisson distribution

N ~ Poiss (μs + b)
s (resp b): expected number 
of signal (resp background)



• Select the could-be signal events: binary classifier f = (g, t)

• Balanced dataset, weights wi as in importance sampling

• Selected signals (resp backgrounds) are True (resp False) Positives

• Optimal decision rule ≈ Neymann-Pearson test decision

• Classifier performance evaluated on simulations

Classification for discovery
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Vu Pham

• H0 vs H1: p-value and significance 

Z = Φ-1(1-p)
• Composite test: μ = 0 against μ > 0
• Approximate Median Significance

• Expected significance= AUC (Dempster 65)

• Depends only on TP and FP

Performance metric

G. Cowan et al. 1007.1727
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https://www.jstor.org/stable/2282680?seq=1%23page_scan_tab_contents
https://arxiv.org/abs/1007.1727


Vu Pham

• Accuracy not relevant when the distributions 
are normalized to their prior probabilities

• Method
• Consistent classifier (eg cross-entropy) 

• Optimize region threshold on the AMS

Classification

Institut Pascal AI and Physics 1321-22/03/19



Vu Pham

• Accuracy not relevant when the distributions 
are normalized to their prior probabilities

• Method
• Consistent classifier (eg cross-entropy) 

• Optimize region threshold on the AMS

Classification
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Signal-rich 
region



Vu Pham

• Dataset typical of real analysis

• 40 features: summary statistics 
(PRI_) and engineered (DER_)

• 1M instances

• Full simulation

• Evaluated on AMS

• Available on opendata.cern.ch

Benchmarking
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Adam Bourdarios et al, JMLR procs 

http://opendata.cern.ch/search?page=1&size=20&collections=ATLAS-Higgs-Challenge-2014
http://proceedings.mlr.press/v42/cowa14.pdf


Vu Pham

• No disruptive method emerged
• Direct optimization of the AMS overfits

• “D”NN and gradient boosting in the same 
league 

• But ML clear winners

• ML technical expertise critical
• Feature construction (physics) marginal 

improvement

• Efficient cross-validation and bagging decisive

• 2019: technical expertise available in standard 
process 

2014-2019
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• Causes: “known unknowns” 

• Known = can be included in the simulation 

pipeline, typically as nuisance parameters

• As opposed to “statistical” error, eg capacity or 

finite size for the classifier tool

• Decreases sensitivity of analysis to the 

parameter of interest = wider uncertainty on 

estimates

• So far, mostly not integrated in selection – 

upper bound of ML usefulness in LHC analysis

Systematic errors

Institut Pascal AI and Physics 1721-22/03/19
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https://cds.cern.ch/record/2273847/files/ATLAS-CONF-2017-041.pdf


• Standard statistical tool: profile likelihood ratio 

• Its distribution is asymptotically independent of nuisance parameters α

• Discovery significance for a counting experiment with gaussian uncertainty 
on background

Systematics on discovery

 Elwood et al.  1806.00322, 
Xia 1810.08387
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≅

Cowan et al. 1007.1727

https://arxiv.org/abs/1806.00322
https://arxiv.org/pdf/1810.08387.pdf
https://arxiv.org/abs/1007.1727


N ~ Poiss (μs(α) + b(α))

• Cross-section μ, normalized to the nominal

• Minimize the relative measurement error: 

• Point-wise classification: estimate mu with error-oriented regularization

• Or, summary (sufficient) statistics: learn a data-set level representation 
minimizing the confidence interval 

Systematics and measurement

σstat: error on the nominal 
σsyst:impact of the systematics 

Typically
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• Pattern recognition: enforce invariance wrt parameterized known 
transforms 

• Tangent Prop [simard91], invariance

• The context matters [Edwards17]

• Topic Model

• Transfer learning

• Fairness [Hardt], with GAN [Louppe], with VAE [Mathieu][Louizos]

• Demographic parity: independence

• Equalized odds/opportunity: independent conditional on the class/some class

ML Contexts
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N ~ Poiss (μs(α) + b(α))

• Cross-section μ, normalized to the nominal

• Minimize the relative measurement error: 

• Point-wise classification: estimate mu with error-oriented regularization

• Or, summary (sufficient) statistics: learn a data-set level representation 
minimizing the confidence interval 

Systematics and measurement

Typically
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Vu Pham

Tangent propagation

• Output of the model should be 
invariant according to some known 
transformation T of the input

• Regularize the derivative of the 
model according to the parameter of 
the transformation

• Data efficient

Pivot Adversarial Network [Louppe et al.]

Point-wise invariance

• GAN: learn the (regularized) objective 
function itself [Goodfellow]

• Generator: distribution of the 
classification score g

• Discriminator: reconstruct z from g
• Principled, but data intensive

G Du
x
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https://arxiv.org/abs/1611.01046


Summary statistics: INFERNO

Learn a representations of the dataset 
defined by context θs  

Laplace approximation

Loss function  I-1
kk ≤ var(μ)

accounts for the
effect of the nuisance parameters 

De Castro et al. 1806.04743 
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https://arxiv.org/abs/1806.04743


Vu Pham

Preliminary results

Systematic mean std
Tau ES 1.0 0.05
Jet ES 1.0 0.05
Lep ES 1.0 0.01
Soft term 2.7 0.5
Nast Bkg 1.0 0.5
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The HEP pipeline
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Pile-up mitigation with Graph Neural Networks

Institut Pascal AI and Physics 2721-22/03/19

Martinez et al. 1810.07988

Classify particles 
created by the 
interesting collision 
against parasitic ones 

https://arxiv.org/abs/1810.07988


Vu Pham

• Edges defined by distance in the 
(η,φ) plane

• Message propagation 

• Classification based on internal 
representation on each node

Pile-up mitigation with Graph Neural Networks
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Martinez et al. 1810.07988

https://arxiv.org/abs/1810.07988


Vu Pham

Data quality monitoring

• Very summary statistics selected to 
detect known failure modes.

• Monitored by detector experts, with 
predetermined validation guide lines

• On-line
• Subsampled data, raw sensors output

• Identify failed elements and raise alarm

• Off-line
• On full data, with physics interpretation

• Larger granularity
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Automating on line DQM

1808.00911

Failed
Frequent
Supervised
CNN

Failed
Rare
Unsupervised
CAE
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OK Expected: small 
variance amongst (6) 
consecutive channels

Expected: small 
variance amongst (6) 

layers

https://arxiv.org/abs/1808.00911


Automating on line DQM

1808.00911

Failed
Frequent
Supervised
CNN

Failed
Rare
Unsupervised
CAE
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OK

https://arxiv.org/abs/1808.00911


Conclusion & Questions
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Approximate Median Significance
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• Xv: node v features, idem ne, idem co(incoming edge)

• hv: internal representation

•  output depnds on internal state and state

GNN

21-22/03/19 Institut Pascal AI and Physics 34



• Xv: node v features, idem ne, idem co(incoming edge), hv: 
internal representation

• Each node is represented by an aggregation of its neigborhood 

GNN
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