Is Machine Learning ready for HEP?

Cécile Germain Laboratoire de Recherche en Informatique Université Paris Sud CNRS INRIA TAU ArXiv physics:astro-ph and physics:hep-ex papers with *machine learning, deep learning* or *neural network* in the title or abstract

The discovery pipeline

The discovery pipeline

The discovery pipeline

The simulation pipeline

Few parameters from theory Interaction with a very complex apparatus

Cranmer NIPS'16

Institut Pascal AI and Physics

Analysis: discovery and measurement

- Likelihood-free inference
 - Likelihood function $p(x|\theta)$ intractable
 - Simulator can generate samples, at a cost
- Workhorse: binary classification
 - Signal vs Background
 - Principled wrt physics objectives

ATLAS full detector simulator

21-22/03/19

Institut Pascal AI and Physics

Analysis: discovery and measurement

- Likelihood-free inference
 - Likelihood function $p(x|\theta)$ intractable
 - Simulator can generate samples, at a cost
- Workhorse: binary classification
 - Signal vs Background
 - Principled wrt physics objectives

Analysis: discovery and measurement

- Likelihood-free inference
 - Likelihood function $p(x|\theta)$ intractable
 - Simulator can generate samples, at a cost
- Workhorse: binary classification
 - Signal vs Background
 - Principled wrt physics objectives
- Surprisingly hard
 - "Dense and full rank": dimension of data manifold
 - = dimension of feature space
 - Needle in a haystack

Investigate the compliance of the data with the standard model: statistical testing on a Poisson distribution

- Selection in the feature space: select the events that could be signal and count: N the only observable
- Does this number significantly exceed the expected number of events predicted by a background-only hypothesis?
- Test $\mu = 0$ against $\mu > 0$

Classification for discovery

- Select the could-be signal events: binary classifier f = (g, t)
- Balanced dataset, weights w_i as in importance sampling

 $\mathcal{D} = \{(\mathbf{x}_1, y_1, w_1), \dots, (\mathbf{x}_n, y_n, w_n)\}$

• Selected signals (resp backgrounds) are True (resp False) Positives

$$s = \sum_{i \in \mathcal{B} \cap \widehat{\mathcal{G}}} w_i$$
 $b = \sum_{i \in \mathcal{B} \cap \widehat{\mathcal{G}}} w_i$

- Optimal decision rule^{Seg}Neymann-Pea
- Classifier performance evaluated on simulations

Performance metric

- H0 vs H1: p-value and significance $Z = \Phi^{-1}(1-p)$
- Composite test: $\mu = 0$ against $\mu > 0$
- Approximate Median Significance

$$\mathsf{AMS} = \sqrt{2\left((s+b)\ln\left(1+\frac{s}{b}\right)-s\right)} \approx \frac{s}{\sqrt{b}}$$

- Expected significance= AUC (<u>Dempster 65</u>)
- Depends only on TP and FP

<u>G. Cowan et al. 1007.1727</u>

Classification

- Accuracy not relevant when the distributions are normalized to their prior probabilities
- Method
 - Consistent classifier (eg cross-entropy)
 - Optimize region threshold on the AMS

Classification

- Accuracy not relevant when the distributions ٠ are normalized to their prior probabilities
- Method •
 - Consistent classifier (eg cross-entropy) ٠
 - Optimize region threshold on the AMS ٠

Institut Pascal AI and Physics

region

Benchmarking

Higgs 式	the HiggsML challenge May to September 2014
When High Er	ergy Physics meets Machine Learning
Co Co	
info to participate of	nd compete : https://www.kaggle.com/c/higgs-boson
	inia kaggle Grader Distriction of Google
Organization committee Balázs Kégl - Appstat-LAL David Rousse Cécile Germain - TAO-LRI Glen Cowan	r-Advisory committee In-Advisory Committee Intersteal Wangler-Advor.CEPV Joing Stater-Advor.CEPV Andress Wangler-Advor.CEPV Marc Schemauer - NRM

- Dataset typical of real analysis
- 40 features: summary statistics (PRI_) and engineered (DER_)
- 1M instances
- Full simulation
- Evaluated on AMS
- Available on opendata.cern.ch

Adam Bourdarios et al, JMLR procs

2014-2019

- No disruptive method emerged
 - Direct optimization of the AMS overfits
 - "D"NN and gradient boosting in the same league
- But ML clear winners
- ML technical expertise critical
 - Feature construction (physics) marginal improvement
 - Efficient cross-validation and bagging decisive
- 2019: technical expertise available in standard process

Systematic errors

- Causes: "known unknowns"
 - Known = can be included in the simulation pipeline, typically as nuisance parameters
 - As opposed to "statistical" error, eg capacity or finite size for the classifier tool
- Decreases sensitivity of analysis to the parameter of interest = wider uncertainty on estimates
- So far, mostly not integrated in selection upper bound of ML usefulness in LHC analysis

Source of un	certainty	σ_{μ}		
Total		0.39		
Statistical		0.24		
Systematic		0.31		
Experimental uncertainties				
Jets		0.03		
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.03		
Leptons		0.01		
	b-jets	0.09		
b-tagging	c-jets	0.04		
	light jets	0.04		
	extrapolation	0.01		
	• 560			
Pile-up		0.01		
Luminosity		0.04		
Theoretical and modelling uncertainties				
Signal		0.17		
Floating nor	${ m malisations}$	0.07		
Z+jets	0.07			
W+jets		0.07		
$t\overline{t}$		0.07		
Single top-quark		0.08		
Diboson		0.02		
Multijet		0.02		
MC statistic	al	0.13		

ATLAS-CONF-2017-04

Systematics on discovery

• Standard statistical tool: profile likelihood ratio

$$\Lambda(\mu) = \frac{L(\mu, \hat{\hat{\alpha}})}{L(\hat{\mu}, \hat{\alpha})}$$

- Its distribution is asymptotically independent of nuisance parameters α
- Discovery significance for a counting experiment with gaussian uncertainty on background

$$\left[2\left((s+b)\ln\left[\frac{(s+b)(b+\sigma_b^2)}{b^2+(s+b)\sigma_b^2}\right] - \frac{b^2}{\sigma_b^2}\ln\left[1 + \frac{\sigma_b^2s}{b(b+\sigma_b^2)}\right]\right)\right]^{1/2} \cong \frac{s}{\sqrt{b+\sigma_b^2}}$$

Cowan et al. 1007.1727

<u>Elwood et al. 1806.00322</u>, <u>Xia 1810.08387</u>

21-22/03/19

Institut Pascal AI and Physics

Systematics and measurement

Typically $\alpha \sim \prod_{i} \text{Normal}(m_i, \tau_i)$

- Cross-section μ , normalized to the nominal

 $N \sim \text{Poiss} (\mu s(\alpha) + b(\alpha))$

- Minimize the relative measurement error:
 - Point-wise classification: estimate mu with error-oriented regularization

$$\frac{\sigma_{\mu}}{\mu} = \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2} \qquad \qquad \sigma_{stat}: \text{ error on the nominal} \\ \sigma_{syst}: \text{ impact of the systematics}$$

• Or, summary (sufficient) statistics: learn a data-set level representation minimizing the confidence interval

ML Contexts

- Pattern recognition: enforce invariance wrt parameterized known transforms
 - Tangent Prop [simard91], invariance
- The context matters [Edwards17]
 - Topic Model
- Transfer learning
- Fairness [Hardt], with GAN [Louppe], with VAE [Mathieu][Louizos]
 - Demographic parity: independence
 - Equalized odds/opportunity: independent conditional on the class/some class

P(g(X) = v | z, y) = P(g(X) = v | z', y)

Systematics and measurement

Typically $\alpha \sim \prod_{i} \text{Normal}(m_i, \tau_i)$

- Cross-section μ , normalized to the nominal

 $N \sim \text{Poiss} (\mu s(\alpha) + b(\alpha))$

- Minimize the relative measurement error:
 - Point-wise classification: estimate mu with error-oriented regularization

$$\frac{\sigma_{\mu}}{\mu} = \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2} \qquad \sigma_{stat} = \frac{\sqrt{s_0 + b_0}}{s_0} \qquad \sigma_{syst} = \frac{s_z + b_z - s_0 - b_0}{s_0}$$

 Or, summary (sufficient) statistics: learn a data-set level representation minimizing the confidence interval

Tangent propagation

- Output of the model should be invariant according to some known transformation *T* of the input
- Regularize the derivative of the model according to the parameter of the transformation

$$l(x) = l_{usual}(x) + \lambda \left\| \frac{\partial g(T(x,z))}{\partial z} \right\|_{z=0}^{2}$$

Data efficient

Pivot Adversarial Network [Louppe et al.]

• GAN: learn the (regularized) objective function itself [Goodfellow]

$$\xrightarrow{u} G \xrightarrow{x} D$$

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$

- Generator: distribution of the classification score g
- Discriminator: reconstruct *z* from *g*
- Principled, but data intensive

Summary statistics: INFERNO

Institut Pascal AI and Physics

Preliminary results

Systematic	mean	std
Tau ES	1.0	0.05
Jet ES	1.0	0.05
Lep ES	1.0	0.01
Soft term	2.7	0.5
Nast Bkg	1.0	0.5

The HEP pipeline

Institut Pascal AI and Physics

Pile-up mitigation with Graph Neural Networks

Classify particles created by the interesting collision against parasitic ones

Pile-up mitigation with Graph Neural Networks

- Edges defined by distance in the (η, φ) plane
- Message propagation

$$GRU\left(h_{\nu}^{i-1}, \frac{1}{n}\sum_{j=0}^{n}A_{t}h_{\nu_{j}}^{i-1}\right) \rightarrow h_{\nu}^{i}$$

Classification based on internal representation on each node

Data quality monitoring

- Very summary statistics selected to detect known failure modes.
- Monitored by detector experts, with predetermined validation guide lines
- On-line
 - Subsampled data, raw sensors output
 - Identify failed elements and raise alarm
- Off-line
 - On full data, with physics interpretation
 - Larger granularity

Automating on line DQM

Automating on line DQM

21-22/03/19

Institut Pascal AI and Physics

Conclusion & Questions

Hammers & Nails - Machine Learning & HEP

July 19-28, 2017 | Weizmann Institute of Science, Israel

Approximate Median Significance

 $n \sim \text{Poiss}(\mu s + b)$ MLE : $\hat{\mu} = \frac{n-b}{s}$ Profile LR : $\lambda(0) = \frac{L(0)}{L(\hat{u})}$ Test statistic $q_0 = -2 \ln \lambda(0)$ if n > b, 0 otherwise $=-2(n\ln\frac{b}{n}-n+b)$ Asymptotically (Wilks) $q_0 \sim \text{chi-2}$. thus $p = 1 - \Phi(\sqrt{q_0})$ and $Z = \Phi^{-1}(1-p) = \sqrt{q_0}$ AMS=Median($Z \mid s$) With n = s + b, $AMS = \sqrt{2} \left| (s+b)\ln(1+\frac{s}{b}) - s \right|$

GNN

$$\mathbf{h}_{v} = f(\mathbf{x}_{v}, \mathbf{x}_{co[v]}, \mathbf{h}_{ne[v]}, \mathbf{x}_{ne[v]})$$

- Xv: node v features, idem ne, idem co(incoming edge)
- hv: internal representation
- output depnds on internal state and state

$$\mathbf{o}_v = g(\mathbf{h}_v, \mathbf{x}_v)$$

GNN

$$\mathbf{h}_{v} = f(\mathbf{x}_{v}, \mathbf{x}_{co[v]}, \mathbf{h}_{ne[v]}, \mathbf{x}_{ne[v]})$$

- Xv: node v features, idem ne, idem co(incoming edge), hv: internal representation
- Each node is represented by an apprepation of its neighborhood

Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algorithm

21-22/03/19