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The Cosmic Web and Large Scale Structures

Early times : quasi-
homogeneous 
matter distribution 

With time, a web-like 
structure forms

Current state :    
thermalized overdense 
halos have formed

Illustris Simulations - (10 Mpc)³ snapshot   Vogelsberger et al, 2014
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The Cosmic Web and Large Scale Structures
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Illustris simulations – (100Mpc)² -   Vogelsberger et al, 2014

Dense region: 
contains clusters, 
massive galaxies

Elongated structure: 
contains galaxies  & 
diffuse gas

Large, empty region

100 M
pc

*1pc ~ 3.3 ly



Simulations - a costly necessity
We use simulations for a 
theoretical view of cosmic web 
structures 

● Typically N-body simulations with 
10⁶-10¹⁰ particles 

A few examples:

● Gravitation only: Millenium, 
250 000 CPU hours, 28 days 
runtime

● Hydrodynamical: Illustris, 3 
million CPU hours,3 months 
runtime

● Very costly, with scales too small 
(100 Mpc) for good  sampling 
of larger structures (>50 Mpc)
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Goal, Motivations & Means

● Goal: emulate cosmic web simulations with the help of machine 
learning

● Motivations: 
We aim to characterize cosmic structures statistically
→ we need to generate large amounts of data
→ we must find faster alternatives to simulations

● Means: Deep Neural Networks
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Images generated by StyleGAN -Karras et al & Nvidia 2018
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GANs* in a nutshell

6

● GAN : Generative Adversarial Network → Generative model

● Two competing networks : 

● the generator, generates new images

● the discriminator, determines the probability for an image to come from the 
dataset or the generator

●  An easy to compute loss but hard to find a working architecture

* Goodfellow, 2014 



Modus Operandi

● Step 1: Run simulation:  
       -box size is (100 Mpc)³,
       -(512)³ particles
       -runtime is 4 days 
→ a snapshot (3D box containing particle positions) is obtained

● Step 2: Extract slices from the snapshot to create a set (96000) of  
2D images (128x128 pixels)

● Step 3: Train the GAN on the dataset
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2D



Results – 128x128 pixel images of log-density
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Results – 128x128 pixel images of log-density

Images from the simulation (“real”) Images from the GAN (“fake”)
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Comparing dataset and generated images 
(statistics on 1000 images) – log density images
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Comparing dataset and generated images 
(statistics on 1000 images) – density images

=   log⁻¹   (          )

→ Discrepancy due to saturation effect
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From GAN to Autoencoder

Encoder Decoder
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Checking Generator quality with the Autoencoder

10 “real” images from the simulations (taken at random)

And their 10 equivalents generated by the GAN

→ Recall: power spectrum is recovered with saturation effects on top 1‰ pixels

→ Shapes, texture and diversity are recovered
→ The phase distribution of the power spectra is also reproduced!
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● The GAN can efficiently extract the inherent 
distribution of a given dataset

● It can then generate images from this distribution 
instantly

● GANs appear as a promising alternative to costly 
simulations

● We can make use of a GAN’s learned features for 
new tasks
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Conclusion


	Cosmology & eXtragalactic
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

