

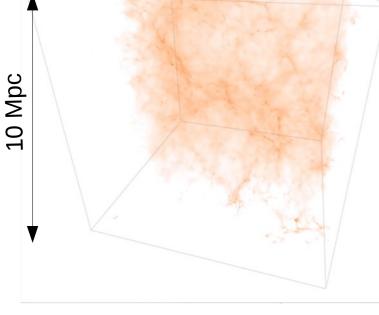
Emulating cosmic web simulations with Generative Adversarial Networks

Marion Ullmo Thesis Advisors: Nabila Aghanim (IAS) – Aurélien Decelle (LRI)

The Cosmic Web and Large Scale Structures

Early times : quasihomogeneous matter distribution

* 1pc ~ 3.3 light years

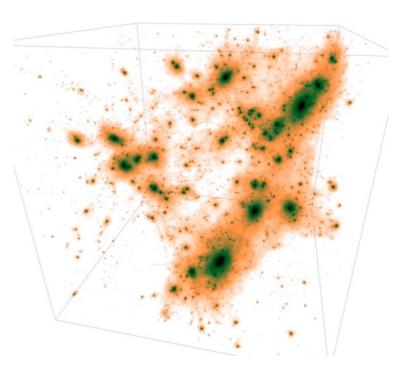


Redshift: z =10

Time since Big Bang: 0.5 billion years With time, a web-like structure forms

Gravitational collapse

Current state : thermalized overdense halos have formed



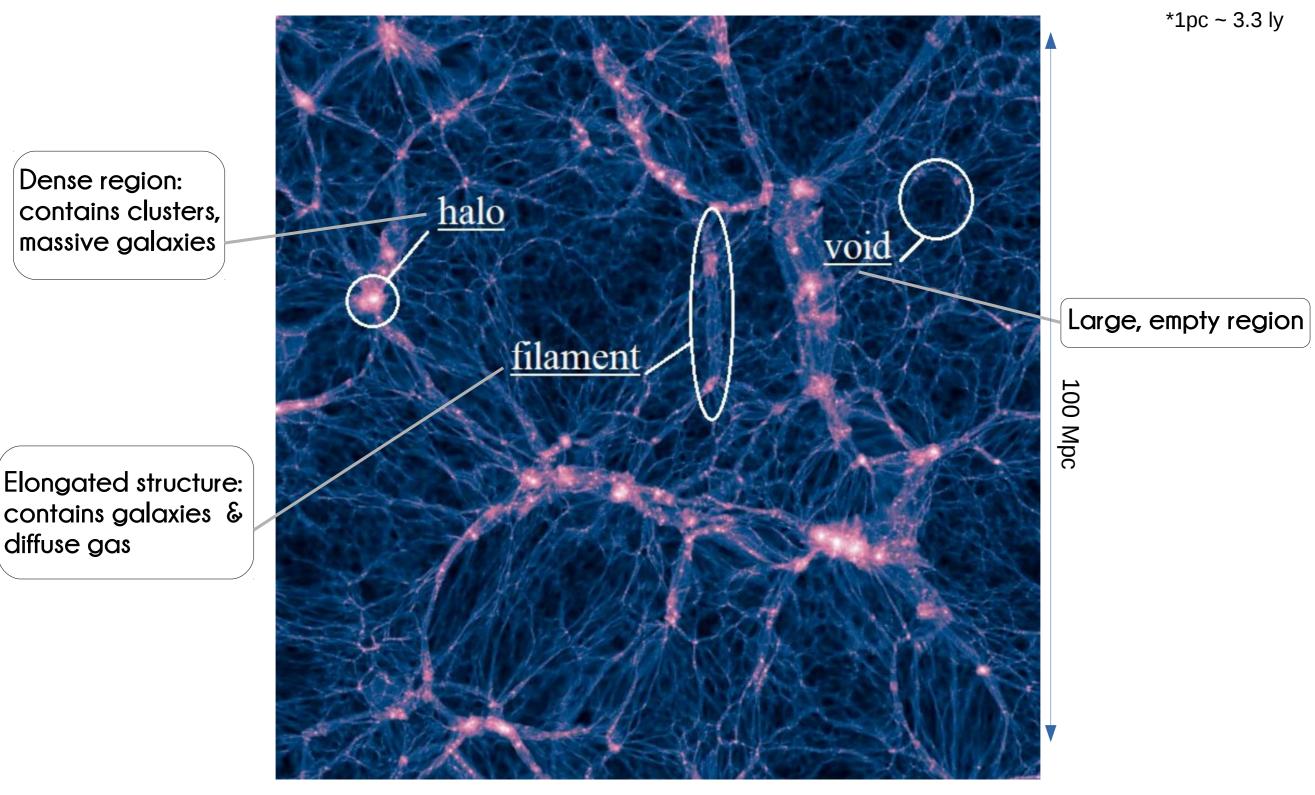
z=5

0.9 billion years

13.8 billion years

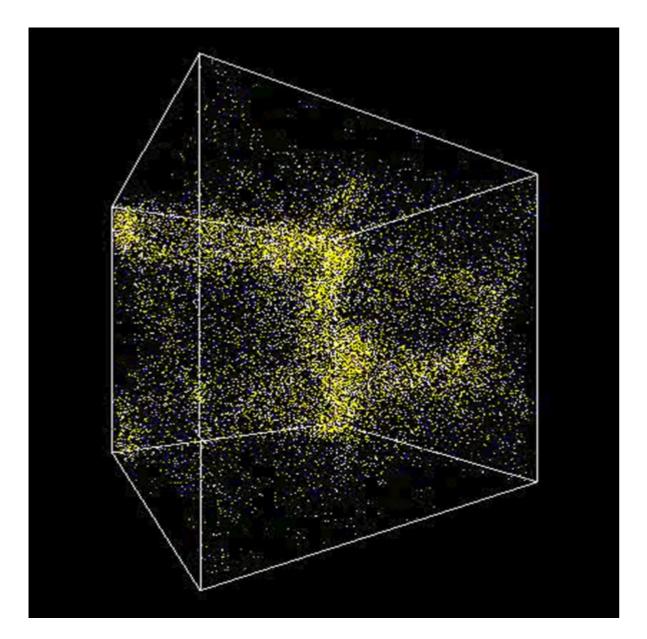
Illustris Simulations - (10 Mpc)³ snapshot Vogelsberger et al, 2014

The Cosmic Web and Large Scale Structures



Illustris simulations – (100Mpc)² - Vogelsberger et al, 2014

Simulations - a costly necessity



We use simulations for a theoretical view of cosmic web structures

- Typically N-body simulations with 10⁶-10¹⁰ particles
 - A few examples:
 - Gravitation only: Millenium, 250 000 CPU hours, 28 days runtime
 - Hydrodynamical: Illustris, 3 million CPU hours,3 months runtime
- Very costly, with scales too small (100 Mpc) for good sampling of larger structures (>50 Mpc)

Goal, Motivations & Means

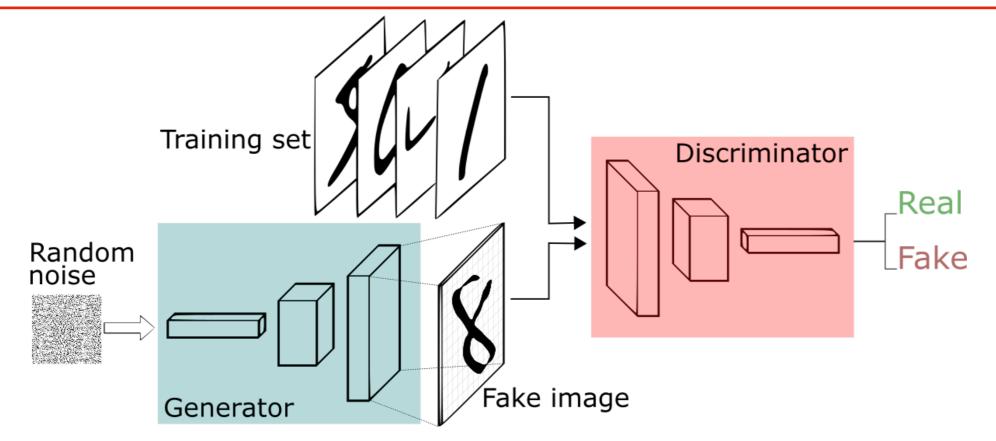
- <u>Goal</u>: emulate cosmic web simulations with the help of machine learning
- Motivations:

We aim to characterize cosmic structures statistically \rightarrow we need to generate large amounts of data \rightarrow we must find faster alternatives to simulations

• <u>Means:</u> Deep Neural Networks

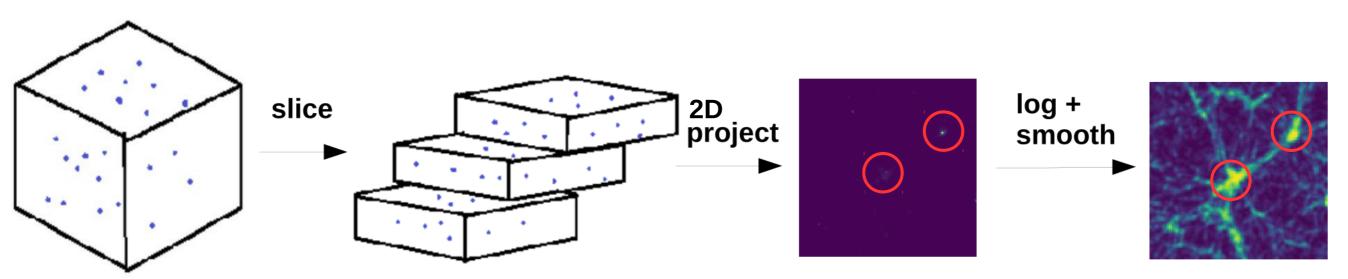
Images generated by StyleGAN -Karras et al & Nvidia 2018

GANs* in a nutshell



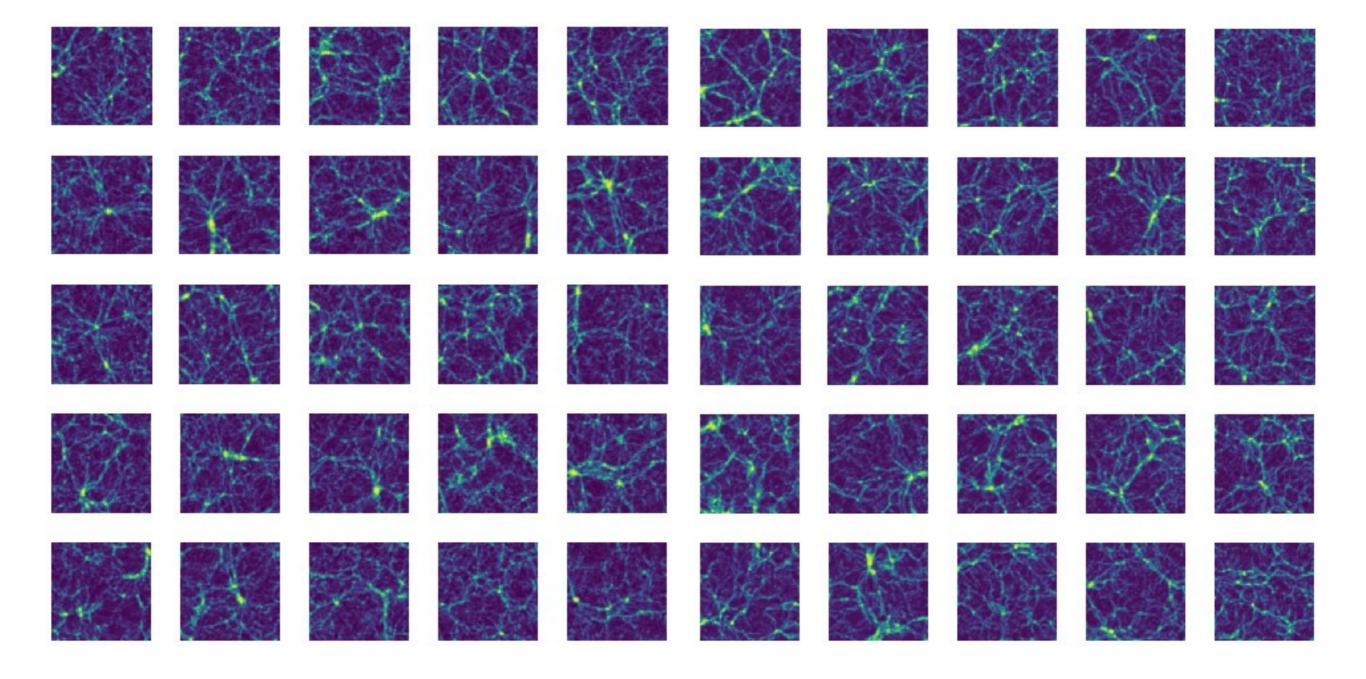
- GAN : Generative Adversarial Network → Generative model
- Two competing networks :
 - the generator, generates new images
 - the discriminator, determines the probability for an image to come from the dataset or the generator
- An easy to compute loss but hard to find a working architecture

Modus Operandi

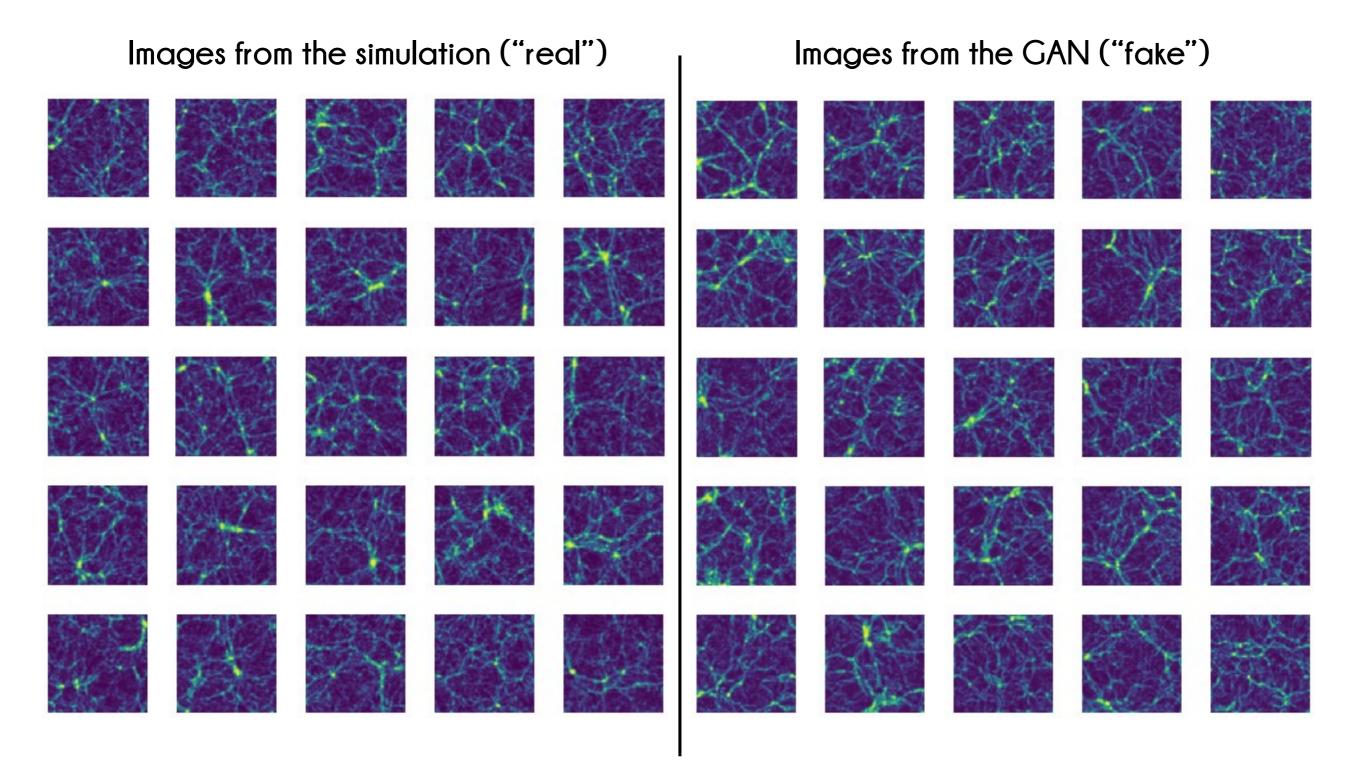


- <u>Step 1:</u> Run simulation: -box size is (100 Mpc)³, -(512)³ particles -runtime is 4 days
 - \rightarrow a snapshot (3D box containing particle positions) is obtained
- <u>Step 2</u>: Extract slices from the snapshot to create a set (96000) of 2D images (128x128 pixels)
- Step 3: Train the GAN on the dataset

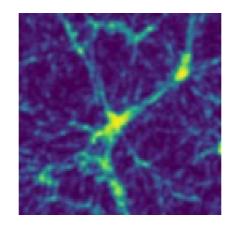
Results – 128x128 pixel images of log-density

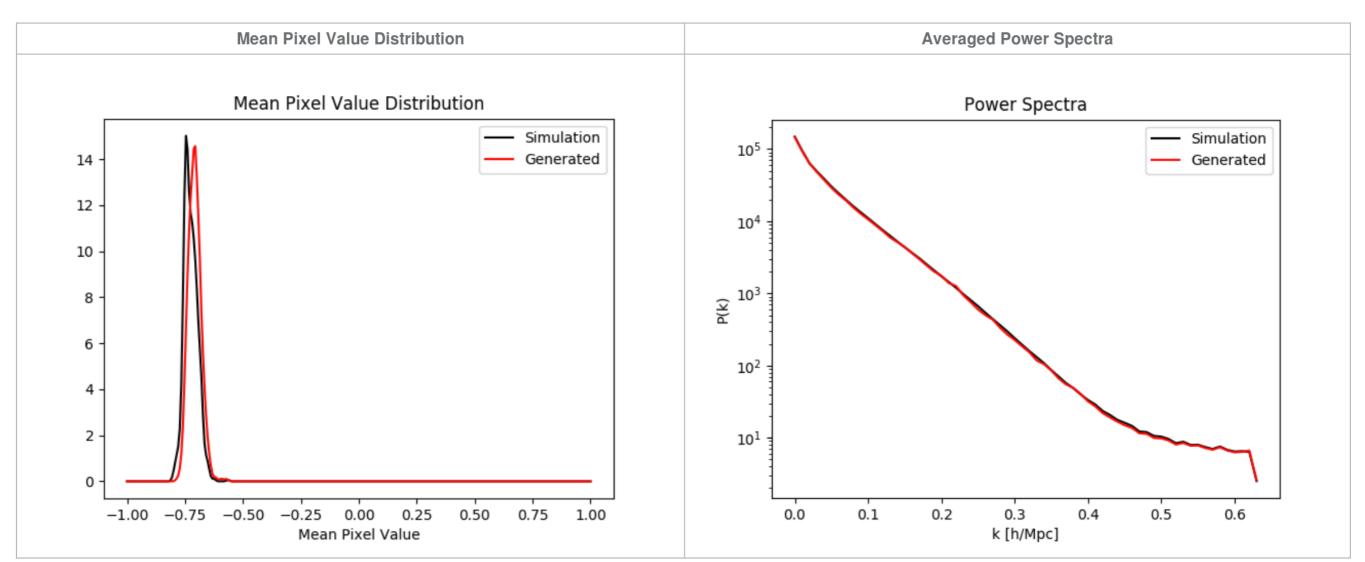


Results – 128x128 pixel images of log-density



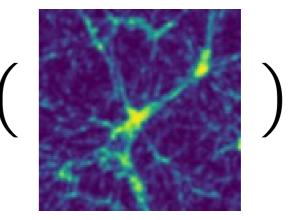
Comparing dataset and generated images (statistics on 1000 images) – log density images



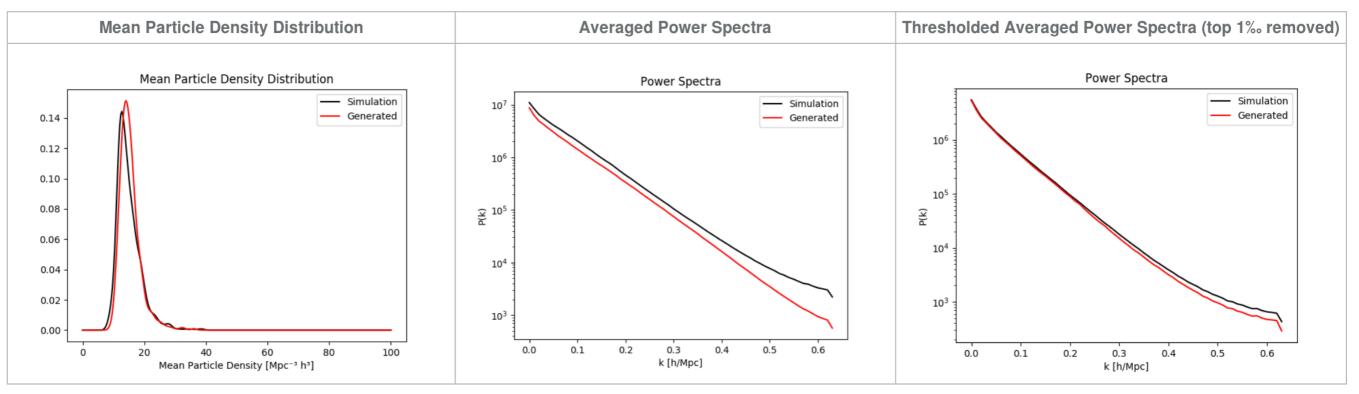


Comparing dataset and generated images (statistics on 1000 images) – density images

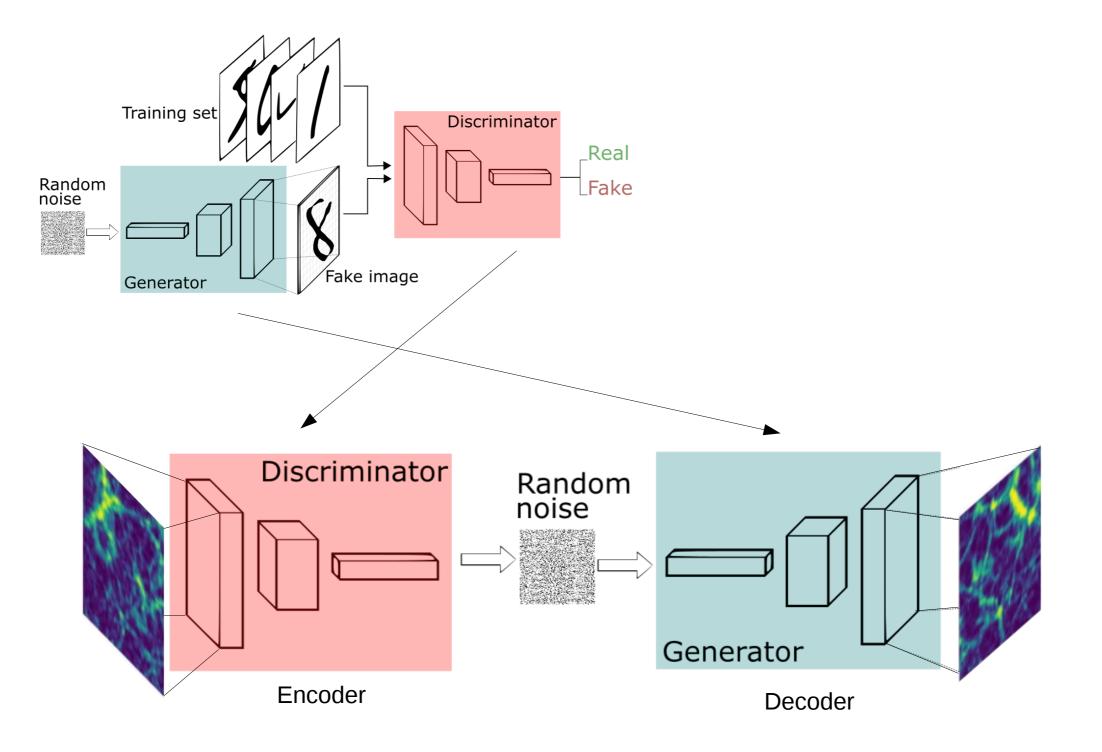
 $= \log^{-1}$



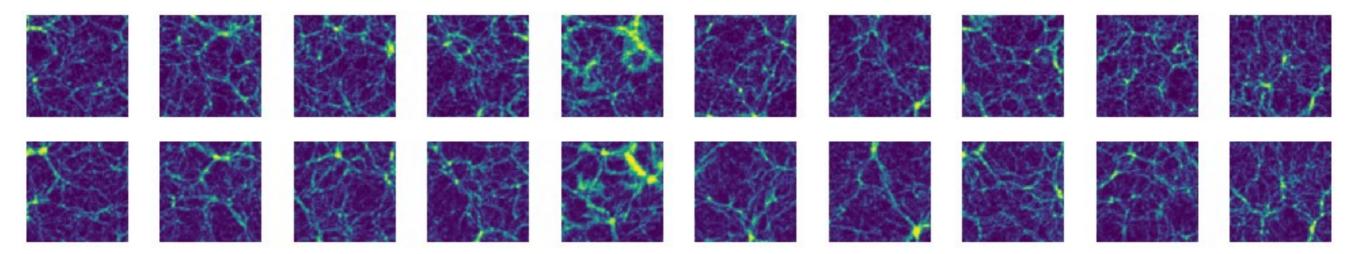
\rightarrow Discrepancy due to saturation effect



From GAN to Autoencoder



10 "real" images from the simulations (taken at random)



And their 10 equivalents generated by the GAN

 \rightarrow Recall: power spectrum is recovered with saturation effects on top 1‰ pixels

 \rightarrow Shapes, texture and diversity are recovered \rightarrow The phase distribution of the power spectra is also reproduced!

- The GAN can efficiently extract the inherent distribution of a given dataset
- It can then generate images from this distribution instantly
- GANs appear as a promising alternative to costly simulations
- We can make use of a GAN's learned features for new tasks