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The Cosmic Web and Large Scale Structures E%p.c

Early times : quasi-
homogeneous With time, a web-like

matter distribution structure forms

Gravitational collapse

* 1pc ~ 3.3 light years
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lllustris Simulations - (10 Mpc)2 snapshot Vogelsberger et al, 2014
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The Cosmic Web and Large Scale Structures E%p.c

*1pc ~ 3.3y

contains clusters,

Dense region: W
massive goloxiesj

Large, empty region
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lllustris simulations — (100Mpc)? - Vogelsberger et al, 2014




Simulations - a costly necessity N

We use simulations for a
theoretical view of cosmic web
structures

* Typically N-body simulations with
106-1019 particles

A few examples:

e Gravitation only: Millenium,
250 000 CPU hours, 28 days
runtime

* Hydrodynamical: lllustris, 3
million CPU hours,3 months
runtime

* Very costly, with scales too small
(100 Mpc) for good sampling
of larger structures (>50 Mpc)




Goal, Motivations & Means \_

e Goal: emulate cosmic web simulations with the help of machine
learning

* Motivations:
We aim to characterize cosmic structures statistically
— we need to generate large amounts of data
— we must find faster alternatives to simulations

* Means: Deep Neural Networks

Images generated by StyleGAN -Karras et al & Nvidia 2018
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GANs* in a nutshell N7
ByapiC
Training set Discriminator
—P
Random > E— {Fake
noise
S S
Generator Fake image

* GAN : Generative Adversarial Network — Generative model
* fTwo competing networks :
* the generator, generates new images

 the discriminator, determines the probability for an image to come from the
dataset or the generator

* An easy to compute loss but hard to find a working architecture

* Goodfellow, 2014 d




Modus Operandi \—

e Step 1: Run simulation:
-box size is (100 Mpc)3,

-(512)3 particles
-runtime is 4 days

— a snapshot (3D box containing particle positions) is obtained

log +
smooth

2D
project
>

» Step 2: Extract slices from the snapshot to create a set (96000) of
2D images (128x128 pixels)

e Step 3: Train the GAN on the dataset
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Results - 128x128 pixel images of log-density
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Results - 128x128 pixel images of log-density \?éplc

Images from the simulation (“real’™) Images from the GAN (“fake™)
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Comparing dataset and generated images

(statistics on 1000 images) - log density images

Mean Pixel Value Distribution

Mean Pixel Value Distribution
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Comparing dataset and generated images /(—,j)
(statistics on 1000 images) - density images BYapPC

— Discrepancy due to saturation effect
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From GAN to Autoencoder \—.
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Checking Generator quality with the Autoencoder E\?SHC

10 “real” images from the simulations (taken at random)
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And their 10 equivalents generated by the GAN

— Recall: power spectrum is recovered with saturation effects on top 1%. pixels

— Shapes, texture and diversity are recovered
— The phase distribution of the power spectra is also reproduced!




Conclusion \ &

 The GAN can efficiently extract the inherent
distribution of a given dataset

* |t can then generate images from this distribution
instantly

* GANs appear as a promising alternative to costly
simulations

* We can make use of a GAN's learned features for
new tasks
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