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What 1S inference? 'j‘ Statistics

Infer a hidden rule, or hidden variables, from data.

Restricted sense : find parameters of a probability distribution

Urn with 10.000 balls. Draw 100, find 70 white balls and 50 black
Bedt guess for the compoosition of the urn? How reliable? Probability
that tt has 6000 white- 4000 black?

It only black and white balls , with fraction x of white,
100

probability to pick-up 70 white balls 1s ( > e
70
Log likelihood of : L(z) = 70logz + 30log(1 — x)
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Bayesian inference

Unknown parameters & Prior R
Measurements Yy Lakelihood P(y|z)

P(yfx) P (x)

Posterior — (ZE'y) =
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W hat iS inference? Artificial intelligence, “
\  machine learning

hidden layer 1 hidden laver 2 hidden layer 3

input laver
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« Neural network » : artificial neurons

y = f(wo + wix1 + wexs + w3xs)
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MNIST database : 70,000 images of digits, segmented,
28 X 28 pixels each, greyscale. Known output

(supervised learning)



Statistical inference

Challenge = rules with many hidden parameters. eg :
machine learning with large machine and big data, decoding

In commonication,...
LU:(ZIZl,...,LL‘N) N=1
Many measurements Y = (y1, e ,yM) M—=1

Measure of the amount of data o= M / N

= Algorithms

= Prediction on the quality of inference, on the

performance of the algorithms, on the type of situations

where they can be applied



Bayesian inference with many unknown
and many measurements

Unknown parameters I = (33‘1, b ,$N) Prior PV (x)
Measurements e P(y|x)

Bayesian inference  P(z|y) < P(y|z)P°(x)

Often (but not necessarily):
Independent measurements R e H Tty

Factorized prior =it = H Sk Er=
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Bayesian inference with many unknown

and many measurements

b= Z(ly) (1:[ Pio(-flf?:)) CXp

B (z,y,) = —log P.(y.|z)

Statistical mechanics.

4 Discrete or continuous variables x;

4 Interactions through e~ EulZ:yu)

QpaiI'WiSe : E,u G z],uaj’i(,u)x

emultibody

4 Disordered system, ensemble

4 Thermodynamic limit, phase transitions

i Z Eu(xv yu)

1

Can be
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« Spin glass »



Spin glasses

® Disordered magnetic systems
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Fach spin ‘sees’ a different local field
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Phase transition with many states:
spin glasses

® Many atoms, microscopic interactions are

known, “disordered systems” e.g.:. CuMn

Each spin ‘sees’ a different local field
Low temperature: frustration

J<0 J<0

J<0



Phase transition with many states:
spin glasses

® Many atoms, microscopic interactions are
known, “disordered systems” e.g

Fach spin ‘sees’ a different local field
Low temperature: frustration
Spins freeze in random directions =

Dithicult to find min. of E

. CuMn

J<0

J<0

lT



Phase transition with many states:
spin glasses

Energy

Many quasi-ground
states unrelated by
symmetries, many
metastable states

Slow dynamics, aging

Configurations

Spin glass

=% Fach spin ‘sees’ a different local field
=+ Low temperature: frustration
= Spins freeze 1In random directions <0 10

= Dithicult to ind min. of E

Useless, but thousands of papers... o

lT



Inference with many unknowns :
« crystal hunting » with mean-field
based algorithms



Historical development of mean field equations :

- In homogeneous ferromagnets:

e Weiss (infinite range, 1907)
* Bethe Pelerls (finite connectivity, 1935)

=1 glassy systems:

e Thouless Anderson Palmer 1977,
« MM Parisi Virasoro 1986 (infinite range)
« MM Parisi 2001 (hinite connectivity)

~ As an algorithm:

Gallager 1963

Pearl 1986

Kabashima Saad 1998

MM Parisi Zecchina 2002
Kabashima 2003, 2008

Donoho Bayati Montanari 2009
Rangan 2010

Krzakala MM Zdeborova 2012 ...



BP = Bethe-Peierls = Beliet Propagation

1

—

P(x1, - ,25) = Ya(®1, T2, T4)Pp(T2, 23) - - -



BP equations

First type of messages:

Probability of &1 1n the

absence of a:

=
//D Mi=a o)




BP equations

Second type of messages:

Probability of 1 when 1t

1s connected only to—C

/@
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BP equations

, ¥ mi—c(r1) = Cmg1(T1)Me—1(T1)ms1(21)
—@
—_—

Mea(B2) = > Yo(@1, Tz, T3)ma o1 )Ms—o(23)

=

L1,X3



BP equations

Propagate messages

along the edges, update

\ messages at vertices,
/@ using elementary local

probabilistic rules

Closed set of equations: two messages
“propagate” on each edge of the factor graph.



When is BP exact?
m1_>c(33'1) — Cmd—>1(xl)meﬁl(xl)mfﬁl(xl)

mc—>2(w2) — Z wc(:ply$27$3)m1—>c($1)m3—>c(x3)

L1,T3

Fluctuations are handled correctly, but beware of correlations

e Exact in one dimension (transfer matrix
e
= dynamic programming)
e Exact on a tree (uncorrelated b.c) . !

Krdos

e Exact on locally tree-like graphs (

Reny etc.) if correlations decay fast

enough (single pure state) and

uncorrelated disorder

e Exact in infinite range problems if _:-"'izOOp length

correlations decay fast enough (single O(log N)

pure state) and uncorrelated disorder
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NB: What happens in a glass phase, when there are many

pure states, and therefore many solutions ?

Misu(@:) = || mosia:)
BP equations V(1)
Correct if, in absence of the 1-
interaction, the correlations
between ¥ and ¢ can be =
neglected. (E T
Energy a
mz—),u CE’@ H ml/—)@ 377,> . [C\]———C
v (#1)
Glassy phase: many states, e

many solutions of BP



2) What happens in a glass phase, when there are many pure

states, and therefore many solutions ?

g 87
BP equations mz’—>,u(33i) — H My —q (357,) Statistics of ’L—W( z)
V(1) over the many states &
Correct if, in absence of the 1- e (m)
interaction, the correlations
related to
between Kk and € can be
P V—>1 (m)
neglected.
e Survey propagation

mz_>,u 37@ — H m;/_m 377, M Parist Zecchina
v v (F 1) =

Configurations

Glassy phase: many states,
many solutions of BP



Simplification: infinite range models

H mq;—m(ll?q;): H mu—n(%‘)
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perturbatively

Mean-field equations can be

written only In terms of site

pdfs: M, (il?z) TAP, AMP...



Power of message passing algorithms

Approximate solution of very hard, and very large constraint

satisfaction problems, ...FAST! (typically linear time)

B.
S|
B

P: Best decoders for LDPC error correcting codes
P: Best solver of random satishability problems

P: Best algorithm for learning patterns in neural networks (e.g.

binary perceptron)

sl
\Q

Data clusterlng, graph colorlng, Steiner trees, etc..
Fully connected networks : TAP (=AMP). Compressed sensing,

linear estimation, etc.

Local, simple update equations:

Each message 1s updated using
information from Incoming
messages on the same node.

Distributed, solves hard global pb




An example of mean-field based inference:
Compressed sensing

Applications:
~ Tomography Connected to:
= TVAENR ~ linear regression
~ Single pixel camera - perceptron learning

~ Satellite images

Sparse data (in appropriate basis)+

linear measurements

4 Wavelet Coefficients
x 10




Benchmark: noiseless limit of compressed
sensing with iid measurements

System of linear measurements

/l] o

Measurements
[y

=1
\ v )

N 8

Signal ©

F = M x N matrix

Random F : «random projections» (incoherent with signal)

Pb: Find £ when |[M < N

and X is sparse



Phase diagram

«Thermodynamic limit» N >1  variables
R =pN non-zero variables

M = aN equations

@ Solvable by enumeration when «a > p but O(e")

® /1 norm approach

Find a ¥ - component vector x such that the M
equations Yy = I'x are satisfied and ||:z:|\1is minimal

® AMP = Bayesian approach Planted: ¢r(x)

P(x) = H[(l — p)o(zi) + po(a;)] H 0 (yu - ZFMZ%)
1=1 ? pu=1 1



Performance of AMP with Gauss-Bernoulli
prior: phase diagram
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Analysis of random instances : phase
transitions

N (real) variables, M measurements (linear functions)

Analysis of random instances : phase transitions
Reconstruction of signal using BP. Fixed 7, decrease @

Impossible

Iti _
Algorithmic Jiimate - /01 = 1/a
eshold (information
thresho theoretic)

threshold



J | -\

Many « crystals »

Easy Impossible
| Not h
Beliet . «Seeded » BP Ot SNOYS
Propagation measurements
N/M

Dynamical phase transition. Ubiquitous in statistical
inference. Conjecture « All local algorithms
freeze »... How universal?



Step 3: design the measurement matrix in
order to get around the glass transition

Getting around the glass trap: design the matrix F
so that one nucleates the naive state (crystal
nucleation idea,

...borrowed from error correcting codes : « spatial
coupling »)

«Seeded BPy



Nucleation y r .

0
— X
0
M : unit coupling

: coupling J;
Structured : coupling />
measurement matrix. : no coupling (null elements)
Variances of the
matrix elements

I'vi = independent random Gaussian variables,

zero mean and variance J, .y /N



Block 1 has a large value of "y . ynit coupling
M such that the solution arise

: ||
in this block... coupting /

: coupling />
: no coupling (null elements)

... and then propagatesin the
whole system!

L=38 Q1 > app

NZ:N/L Oéj:Ck/<Cva q > 2
1

Mz' :CVZN/L o = —(()41—|—(L—1)Oé/)

L



Numerical

study

Mean square error

0.4 |

UjI\J.A_hA

~ ~~ —~ —~ —
—_

OO O

-

PP
Il

t=150
t=200
t=250
t=300

0.3 |

0.1h

t =10

decoding of ©

first block

L =20

N = 50000

1IO |
Block index

p=.4

15

t = 100
decoding

T of blocks
] 1to 9

20



Performance of the probabilistic
approach + message passing +
parameter learning+ seeding matrix

N N N
Z:/Hdaﬁ]H CE@ ‘|‘,0¢ 33'@ H (?JMZFMZCEZ)
1=1

J:]_ 1—=1 :

( ) » Simulations
» Analytic approaches
(replicas and cavity)

— Oc = PO

Reaches the ultimate information-theoretic threshold

Proof: Donoho Javanmard Montanari



Performance of AMP with Gauss-Bernoulli
prior: phase diagram
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-

Easy Impossible

N/M

Phase transitions are crucial in large inference problems
Hard-lmpossible = absolute limit (Shannon-like)
Kasy- Hard = limit for large class of algorithms (local)



The spin glass cornucopia

A very sophisticated and powerful corpus of conceptual
and methodological approaches has been developed
(replicas, cavity, TAP.,...), and has found applications in
many ditferent fields of information theory and computer

science
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Sausset, Yifan Sun, Lenka Zdeborova, Pan Zhang,...



