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1/learning from example
2/ can predict!

* Revolution in Artificial Intelligence
* Principles to understand why It works lacking



Set-up
* binary classification task, P training data {x;,y; = 1}

* Deep net fw(X;) with N parameters, width h (N~h2)
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Learning

P
1
e Learning: gradient descent in loss function £ = 5 ;l%(fW(x’b))
e Quadratic Hinge Loss:
li(fw (i) =0 if fw(x:)y: > 1
L(fw (i) = (fw(zi)y: — 1)? if Sw(ziy <1

« L=0<% fwl(x;)y; > 1Vi satisfability problem



Learning= descent in Loss Landscape
L1t

* High dimensional, not convex

landscape.

Question: why not stuck in bad local

minima? Landscape geometry? W
Choromanska et al. 15, Soudry, Hoffer 17’ Cooper 18’ Baity-Jesy et al. 18

* sharp jamming transition in the landscape separating glassy
landscape from an over-parametrized-phase with £ = () .

Achievable if N~P Geiger et al. 18, Spigler et al. 18 (see Silvio’s talk)

* Why deep nets have predictive power while N > P, or even N>>P??



Empirical tests: MNIST (parity)

* 6*10% images of digits
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e position of transition depends on dynamics (GD, adams, fire...)



Spigler et al. arxiv 1810.09665

Generalization
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see also Advani and Saxe 17,
. . . . Neal et al. 18, Neyshabur et al., 15, 17.
2 Interesting asymptotic regimes:

* peak at the jamming transition
* performance improves with N in the SAT phase???

works by Rakhlin, Srebro:increased regularization with N
Quantitative description? importance of N=



Quantifying fluctuations induced by initialization

* fixed data set, output function f stochastic due to initialization
* This stochasticity is reduced as N grows Neal et al. arxiv 1810591

fN : ensemble average of fN on (20) initial conditions

Ifn = fnlI2
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(to be explained later)




Test and practical consequences

Geiger et al., arxiv 1901.01608
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* test error becomes nearly flat for N>N*, optimal near N*

* Best procedure: ensemble average near jamming transition!!!



Scaling argument for generalization error
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* signed distances (x) becomes small. If smooth:
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Scaling argument for generalization error
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Propagation in infinitely wide nets at t=0

Neal 96, williams 98, Lee et al 18, Ganguli et al.

set-up: initialization iid weights = # where w ~ N(0,1)
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* Non-trivial limit for propagation, pre-activation o« ~ 1 andf~1

* pre-activation and output are iid gaussian processes as h — o0



Learning: Neural Tangent Kernel

Jacot, Gabriel, Hongler NIPS 18

manifold f,,

smallh: Of /Ow evolves large h: O f /Ow fixed

T~

“lazy learning”:

_ weights change a little bit ¢ — WY ~ 1/h
- sufficient to change f (positive interference)

- does not change 0f /0w



Results

Jacot, Gabriel, Hongler NIPS 18

P
L = % Z; Li( fw (x;)) gradient descent
df () 1 &
s DIL I

o) = 3 2201

useless in general...

Theorem: kernel does not depend on initialization at large N,

nor on time hm O% (i, ) = O (s, )
df () 1 — , deep learning equivalent to kernel
dt P; ool i @£ (i) learningas N — o0




FI n Ite N Geiger et al. 19, Jacot et al 19

* Fluctuations of ©% goas 1/vVh ~ N~1/4

+ evolution in time much smaller 8% — 057" ~ 1/V N

* |eads to fluctuations of similar magnitude for output function
(proof mean square loss)

N = |~ N4




Is learning features useful?

neurons pattern of activity barely

changesas N — o0

to be associated with the emergence

ot (z) — a=(z) ~ 1/Vh

success of deep learning believes

of good features....

Small effect FCC on MNIST.
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test errar

Is learning features useful? CNN data
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Conclusion

* Deep nets fit all data if N>N*, jamming transition

e Performance keep increasing passed N* because
fluctuations induced by initialization diminish

* fluctuations are induced by the fluctuations of the
kernel, fixed at infinite N

* In practice: best procedure= ensemble averaging
just above N*

e Question future: scaling performance swith P?



Results

 Theorem 3: Dynamics find global minimum of the loss if
loss [; convex and activation function non-polynomial

Gram matrix O, (x;,x;) positive definite

e Result4: smoothness of ft (x) can be deduced

fi(z) = —Ichz oo (T, ;)




Why does deep learning work?

 when can one fit the data (not stuck bad minimum)?

crank up the number of parameters

 Why does it generalize well, even when the number of
parameters is large?

Generalization keeps improving with number of parameters...

MENU:

1/ Quantification of evolution of generalization with number of
parameters

2/ Neural Tangeant Kernel (NTK)
3/ NTK and generalization as number of parameters becomes

asymptotically large



