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Proteins: from sequence to function
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VERY HARD FROM
FIRST PRINCIPLE METHODS

(Molecular Dynamics, Ab Initio…) 
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• Stability: Must fold, and only in the native(s) fold(s)
• Affinity: Must bind to target ligand
• Specificity: Must  preferentially bind a specific ligands…
• Catalytic Activity: Must promote reaction within the target ligand
• Allostery: Must change conformation upon partner binding…

Constraints on  protein sequences
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Multiple Sequence Alignment of 
Functional WW-domain sequences from 

diverse organism and genes
(Source: PFAM)
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Functional WW-domain sequences from 
diverse organism and genes

(Source: PFAM)

Examples of non-functional  WW sequences 
obtained by mutagenesis

(Fowler et al. Nature Methods 2011)
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Functional WW-domain sequences from 
diverse organism and genes

(Source: PFAM)

Examples of non-functional  WW sequences 
obtained by mutagenesis

(Fowler et al. Nature Methods 2011)

<50% Sequence identity.
Same activity in vitro

(Otte et al. Protein Science 2003)
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Multiple Sequence Alignment of 
Functional WW-domain sequences from 

diverse organism and genes
(Source: PFAM)

Examples of non-functional  WW sequences 
obtained by mutagenesis

(Fowler et al. Nature Methods 2011)

Differ by a single 
amino-acid

<50% Sequence identity.
Same activity in vitro

(Otte et al. Protein Science 2003)

Proteins: from sequence to function



• What makes a protein sequence functional ?

• Can we find biologically relevant 
representations of these sequences ?

• Can we design functional artificial sequences ?

Proteins: from sequence to function



sequence space

Data: Multi Sequence Alignment (MSA)

Non 
functional

Functional

Mutational Landscape

Mutational Landscape of Proteins

(Source: PFAM)



Model: Probability of a sequence

sequence space

Data: Multi Sequence Alignment (MSA)

Non 
functional

Functional

Prediction for change in functionality due to single, 
double, … mutations

Mutational Landscape of Proteins

Infer from the data the  Probability of a sequence P(v1….vN) to be a good  sequence
for that protein. 

vi =A,C,D….W,-, are the 20 amino acid of the protein +gap symbol
Potts (categorigal) variables

(Source: PFAM, typically 
103-105sequencces)



Model: Probability of a sequence

sequence space

Data: Multi Sequence Alignment (MSA)

Non 
functional

Functional

?

Prediction for change in functionality due to single, 
double, … mutations               & design new sequences

Mutational Landscape of Proteins

Infer from the data the  Probability of a sequence P(v1….vN) to be a good  sequence
for that protein. 

vi =A,C,D….W,-, are the 20 amino acid of the protein +gap symbol
Potts (categorigal) variables

(Source: PFAM, typically 
103-105sequencces)



Correlation
Covariation

fij (vi,vj)
Frequency fi (vi):
Conservation
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Inverse Statistical
Modeling

Structural, 
functional
constraints

Model inference from data

Correlation
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e
P(v1,...,vN)   =

i

Z[{J,h}] 

 hi(vi)+  Jij (vi,vj)  

Inverse Statistical
Modeling

Least constrained, 
maximal entropy model
(Jaynes 1957) reproducing
frequencies fi(vi) and 
correlations fij (vi,vj)
of empirical distribution 

i<j

Structural, 
functional
constraints

[Morcos … Weigt, PNAS 2011 , Ekeberg, Aurell (2015),
Hopf, Colwell et al Cell (2012),Baker(2014),S.C.…Weigt(2017)]

Network inference from data

Correlation
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fij (vi,vj)

R
F
H
K
R
T
K
R

I
L
E
Y
R
Q
Q
L

D
N
R
R
A
K
Q
N

G
G
Q
T
M
E
E
G

R
R
E
R
E
E
E
R

L
L
T
L
V
L
V
A

K
R
G
T
G
A
E
D

N
D
E
D
N
N
N
D

T
T
L
L
L
L
A
L

D
D
K
D
K
K
K
D

H
H
H
H
H
H
Q
H

Frequency fi (vi):
Conservation



Direct Coupling Analysis:

✔Give structural informations
✔Model is generative
✔Predicts cost of mutations and design new sequences
Does not  gives direct  information on the  ‘good’ sequences

Generate New Sequences
by Monte Carlo simulations

[Morcos … Weigt, PNAS 2011 , Ekeberg, Aurell (2015)
Hopf, Colwell et al Cell (2012),  Baker(2014), S.C. …Weigt(2017)]

Jij (vi,vj)

i  w(vi)

Network inference from data

Energy= -logP(v1….vN) 



Features extraction from data

Energy= -logP(v1….vN) 

PCA, Sparse PCA, and Sector Analysis : 
From correlation matrix extract principal components:  features w(vi) 
Project sequences on them to characterize the wells of the energy landscape
[ A Raussel.. A Valencia 2010, N Halabi,…R.Ranganathan 2009 ]

i  wi(vi)

But are not generative .. 



The Hopfield Model

E(v)=

Jij (vi,vj)=  wi
m (vi) wj

m (vj) 

E(V)=-  Jij (vi,vj)

m=

 ( wi
m (vi))

2

i

1

M

One can built up a coupling matrix storing M features or ’patterns’ 
as energy minima of the model ( associative memories of the network):

i  wi
m(vi)

1
2

1
2

-

[Hopfield, PNAS 1982]
[SC Monasson Weight Plos Comp Bio 2016]
[Barra, Bernacchia,Santucci, Contucci,Neural Network 2012]

Large probability sequences have large scalar
products with the feature -> ‘look like’ it

i<j
m=1

M



Different Network Architecture 

Boltzmann Machine Restricted Boltzmann Machine

V1

V3V2

V4

J23

Ising/Potts model (BM) explains correlations by 
couplings Jij between nodes (variables)

Hidden layer

Visible layer (binary r.v.)

V1 V3V2

h1 h2

wiµ

RBM explains data through their common features 
Combinations of features can, in turn, generate new data

M



Learning distributions over data

(protein sequences)

Data space



Set of all functional sequences

Data space

Learning distributions over data

(protein sequences)



Learning Representations of data

h

Set of all functional sequences

Data space Representation space

{h}M           (features)

h1

h2

(protein sequences)



Learning Representations of data

specificity

Set of all functional sequences
[Protein bio-chemical properties] 

{h}M           (features)

h1

Data space Representation space-> Genotype ->Phenotype

(protein sequences)
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Learning Representations of data
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Learning Representations of data
Set of all functional sequences

[Protein bio-chemical properties] 

Data space Representation space

(protein sequences)



Hidden layer

Visible layer (binary/potts r.v.)

V1 V3V2

h1 h2

• Graphical model constituted by two sets of 
random variables that are coupled together.

. 

Restricted Boltzmann Machines
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Hidden layer

Visible layer (binary/potts r.v.)

V1 V3V2

h1 h2

• Graphical model constituted by two sets of 
random variables that are coupled together.

. 

P(v,h) =
1

Z
exp -E(v,h)[ ]

E(v,h) = - gi (vi )+ Uµ(hµ)- wiµ(vi )hµ

i,µ

å
µ

å
i

å

wiµ

N

Given an input configuration, the hidden unit m  

Receives an input:

Which determines the probability of its activity: 

Restricted Boltzmann Machines

M



Hidden layer

Visible layer (binary/potts r.v.)

V1 V3V2

h1 h2

• Graphical model constituted by two sets of 
random variables that are coupled together.

. 

P(v,h) =
1

Z
exp -E(v,h)[ ]

E(v,h) = - gi (vi )+ Uµ(hµ)- wiµ(vi )hµ

i,µ

å
µ

å
i

å

wiµ

N

Given an hidden unit configuration the visible unit 
takes the  value vi with probability

Restricted Boltzmann Machines

M



Hidden layer

Visible layer (binary/potts r.v.)

V1 V3V2

h1 h2

• Graphical model constituted by two sets of 
random variables that are coupled together.

• RBM learns a probability distribution over the 
visible layer. 

P(v,h) =
1

Z
exp -E(v,h)[ ]

E(v,h) = - gi (vi )+ Uµ(hµ)- wiµ(vi )hµ

i,µ

å
µ

å
i

å

wiµ

P(v) = dhµ

µ

Õò P v,{hµ}( ) º
1

Zeff

exp -Eeff (v)éë ùû

RBM are generative models, trained through unsupervised learning
Learning is done by  finding parameters maximizing the Likelihood

N

M

Restricted Boltzmann Machines



Hidden layer

Visible layer (binary/potts r.v.)

V1 V3V2

h1 h2

wiµ

N

Parameters of RBM and data-representational
phases

• Number of Hidden Units M
• Shape and  parameters of Potential

• Input Fields             and  weights
and their sparsity (by adding a L1 regularization)  

Parameters determined through training

M
wiµ

[J. Tubiana, R.Monasson, Physical Review Letters 118, 138301 (2017)]

Depending on such parameters there are 
different data-representational phases,separated
by phase transitions

We use Double Relu Units



The interpretability-performance trade-off
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The interpretability-performance trade-off
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The interpretability-performance trade-off

l1

2 = 0

l1

2 = 0.03

l1

2 = 0.25

Tubiana Cocco Monasson , elife, 2019, 



• Lattice Proteins

• WW Domain

• Kunitz Domain

• Hsp70 chaperone

Protein families studied

Shaknovich et al. J. Chem. Phys. 1990
Jacquin et al. PLOS CB 2016

Russ et al. Nature 2005

Morcos et al. PNAS 2011

Smock et al.  Mol. Sys. Biol. 2010
Malinverni et al. PLOS CB 2015

N=27 aa

N=54 aa

N=31 aa

N=661 aa



• N=30-40 amino-acids (very small)

• Role: 

• Gene regulation, transcription

• RNA processing

• Receptor signaling

• Recognition of Proline-Rich Linear Motifs

• 4 types of ligand specificities

The WW Domain



WW: a small binding domain    

Sector Analysis: 8 positions very
correlated

group II:   PPLP
group III:  PPR
group IV:  PS/PT

[W.P. Russ…R. Ranganathan, Nature 2005
N Halabi,…R.Ranganathan 2009  ]

group I:     PPxY

Sequence Ligand 

Sequences have
different binding affinity:



wiµ

Hidden layer

Visible layer (binary r.v.)

V1 V3V2

h3 h4

Similarly to principal components in PCA:  features wim

[ A Raussel.. A Valencia 2010, N Halabi,…R.Ranganathan 2009 ]

wi3

Tubiana Cocco Monasson 2018,  arXiv: 1803.08718 q.bio

RBM features



wiµ

* * ** ** *** *
Type I
Specificity

wi3
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Tubiana Cocco Monasson 2018,  arXiv: 1803.08718 q.bio

Similarly to principal components in PCA:  features wim

[ A Raussel.. A Valencia 2010, N Halabi,…R.Ranganathan 2009 ]

Hidden layer

Visible layer (binary r.v.)

V1 V3V2

h3 h4

RBM features
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wi3
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wiµ

Hidden layer

Visible layer (binary r.v.)

V1 V3V2

h3 h4

Tubiana Cocco Monasson 2018,  arXiv: 1803.08718 q.bio

Similarly to principal components in PCA:  features wim

[ A Raussel.. A Valencia 2010, N Halabi,…R.Ranganathan 2009 ]

* * * ** * * * *

*

RBM features



RBM features

Tubiana Cocco Monasson , elife, 2019, 



Type I  : PPXY
Type II : PPLP
Type III: PR
Type IV: [p(S/T)P]

Experimental data from:
Russ et al. Nature 2005
Espanel and Sudol J. Biol. Chem. 1999
Otte et al. Protein Science 2003

Motif recognized 

RBM features reflect specificity

Tubiana Cocco Monasson , elife, 2019, 



Artificial Sequences

Tubiana Cocco Monasson , elife, 2019, 

Artificial Sequence Generation 
with RBM



Artificial Sequence Generation with RBM

Artificial Sequences

Type II/III/IV-like 
binding specificity +
Short loop  Type II/III

Type II/III/IV-like 
binding pocket +
Long loop  Type IV

Type I-like 
binding specificity +
Short loop

h3 h3

h3

h4
h4

h4



Artificial Sequence Generation with RBM

Type I-like 
binding specificity +
Short loop

h3 h4

Type II/III/IV-like 
binding specificity +
Short loop  Type II/III

h3

h3

h4

h4

Type II/III/IV-like 
binding pocket +
Long loop  Type IV

h3
h4

Type II/III/IV-like 
binding pocket +
Long loop  Type IV



RBM WW Features:
A contact mode    



Hsp70 chaperone protein

• N>600 amino-acids

• Multidomain.
• Nucleotide Binding Domain (NBD)
• Substrate Binding Domain (SBD)
• LID Domain
• Linker

Function:
• Traps substrate proteins between 

the LID and the SBD
• LID/SBD cavity is either open or close

Roles:
• Assist protein folding 
• Transport proteins for degradation

ADP bound conformation (closed)ATP bound conformation (open)



Interdomain features control allostery



• Summary:
– Under specific conditions (weight sparsity, non-linearity), RBM learn 

compositional representations of data.
– They achieve a good trade-off between interpretability and 

performance
– RBM can extract meaningful features from sequence
and cluster protein subfamilies with respect to different properties eg. 
stability,  binding specificity, allostery..
- RBM can Generate sequences with specific properties (in given clusters)

• But: 
-RBM less well known and studied Model than BM. Training not guarantee to 
work well:  Log-Likelihood is not a convex function …

• Outlook:
– Experimental validation of designed sequences

Conclusion


