Extracting features from protein sequence data with Restricted Boltzmann Machines

Rémi Monasson, Jérôme Tubiana

Laboratory for Theoretical Physics, Ecole Normale Superieure & CNRS, Paris

Simona Cocco

Laboratory for Statistical Physics, Ecole Normale Superieure & CNRS, Paris

The Artificial Intelligence and Physics Conference, Orsay, march 22, 2019
Proteins: from sequence to function

Sequence → Folding → Structure → Docking → Function

WW domain

[Russ et al. 2005]
Proteins: from sequence to function

Sequence → Folding → Structure → Docking → Function

VERY HARD FROM FIRST PRINCIPLE METHODS (Molecular Dynamics, Ab Initio...)

[Russ et al. 2005]
Constraints on protein sequences

- **Stability**: Must fold, and only in the native(s) fold(s)
- **Affinity**: Must bind to target ligand
- **Specificity**: Must preferentially bind a specific ligand...
- **Catalytic Activity**: Must promote reaction within the target ligand
- **Allostery**: Must change conformation upon partner binding...

[Russ et al. 2005]

WW domain
Proteins: from sequence to function

Multiple Sequence Alignment of Functional WW-domain sequences from diverse organism and genes
(Source: PFAM)
Functional WW-domain sequences from diverse organism and genes
(Source: PFAM)

Examples of non-functional WW sequences obtained by mutagenesis
(Fowler et al. Nature Methods 2011)
Proteins: from sequence to function

Functional WW-domain sequences from diverse organism and genes
(Source: PFAM)

Examples of non-functional WW sequences obtained by mutagenesis
(Fowler et al. Nature Methods 2011)

<50% Sequence identity.
Same activity in vitro
(Otte et al. Protein Science 2003)
Multiple Sequence Alignment of Functional WW-domain sequences from diverse organism and genes (Source: PFAM)

<50% Sequence identity. Same activity in vitro (Otte et al. Protein Science 2003)

Examples of non-functional WW sequences obtained by mutagenesis (Fowler et al. Nature Methods 2011)

Differ by a single amino-acid
Proteins: from sequence to function

• What makes a protein sequence functional?

• Can we find biologically relevant representations of these sequences?

• Can we design functional artificial sequences?
Mutational Landscape of Proteins

Data: Multi Sequence Alignment (MSA)

(Source: PFAM)
Mutational Landscape of Proteins

Data: Multi Sequence Alignment (MSA)

Model: Probability of a sequence

Prediction for change in functionality due to single, double, ... mutations

Infer from the data the Probability of a sequence $P(v_1,...,v_N)$ to be a good sequence for that protein.

$v_i = A, C, D, ..., W, -$ are the 20 amino acids of the protein + gap symbol

Potts (categorical) variables

(Source: PFAM, typically 10^3-10^5 sequences)
Mutational Landscape of Proteins

Data: Multi Sequence Alignment (MSA)

PLPPGWEERIHLDE-GRTFYIDHNSKITQWEDPRLQ
PLPNNWEMAYTEK-GEYVIFDHTKTTWSLDPLRA
PLPPGWWEIRYTAAGERFVDHTRRRTTEDPRPG
LSKCPWKEYKSDS-GKPPYYNSQTKESRWAKPEL
GAASGWTEHKSQD-GRTYYNTETKQSTWKEPDDL
GLPKPWIKSRSRNPPFFNTEHSLWEPPAT
-MRGWQEFKTPA-GKYYYNKNTQSRWEKPNLK
SVSDESWSVHTNEK-GTPYHNRVTQKTSWIKPDVL
DLPAGWMVQDTS-G-TYWHIPTGTTQGEPPGRA
AVKTWVEGLSEED-GFTYINTETGESRWKPDGF

(Source: PFAM, typically 10^3-10^5 sequences)

Model: Probability of a sequence

Prediction for change in functionality due to single, double, ... mutations & design new sequences

Infer from the data the Probability of a sequence $P(v_1,...,v_N)$ to be a good sequence for that protein.

$v_i = A, C, D, ..., W, -$ are the 20 amino acid of the protein + gap symbol

Potts (categorical) variables
Correlation $f_{ij}(v_i, v_j)$
Covariation
Frequency $f_i(v_i)$: Conservation

Model inference from data

Structural, functional constraints
Model inference from data

Structural, functional constraints

Inverse Statistical Modeling

Correlation $f_{ij}(v_i, v_j)$

Covariation

Frequency $f_i(v_i)$: Conservation

R I D G R L K N T D H
F L N G R L R D T D H
H E R Q E T G E L K H
K Y R T R L T D L D H
R R A M E V G N L K H
T Q K E E L A N L K H
K Q Q E E V E N A K Q
R L N G R A D D L D H
Network inference from data

Least constrained, maximal entropy model (Jaynes 1957) reproducing frequencies $f_i(v_i)$ and correlations $f_{ij}(v_i,v_j)$ of empirical distribution

$$
P(v_1,\ldots,v_N) = \frac{\sum_i h_i(v_i) + \sum_{i<j} J_{ij}(v_i,v_j)}{Z[\{J,h\}]}$$

Network inference from data

Direct Coupling Analysis:

- ✔ Give structural informations
- ✔ Model is generative
- ✔ Predicts cost of mutations and design new sequences
- Does not give direct information on the ‘good’ sequences

\[J_{ij}(v_i, v_j) \]

Generate New Sequences by Monte Carlo simulations

Energy = \(-\log P(v_1, ..., v_N)\)

\[\sum_i w(v_i) \]
Energy = $-\log P(v_1,...,v_N)$

$$\sum_i w_i(v_i)$$

PCA, Sparse PCA, and Sector Analysis:
From correlation matrix extract principal components: features $w(v_i)$
Project sequences on them to characterize the wells of the energy landscape
[A Raussel.. A Valencia 2010, N Halabi,...R.Ranganathan 2009]

But are not generative..
The Hopfield Model

One can built up a coupling matrix storing M features or ‘patterns’ as energy minima of the model (associative memories of the network):

$$J_{ij}(v_i, v_j) = \sum_{\mu=1}^{M} w_{i\mu} (v_i) w_{j\mu} (v_j)$$

$$E(V) = -\frac{1}{2} \sum_{i<j} J_{ij} (v_i, v_j)$$

$$E(V) = -\frac{1}{2} \sum_{\mu=1}^{M} \left(\sum_{i} w_{i\mu} (v_i) \right)^2$$

Large probability sequences have large scalar products with the feature -> ‘look like’ it

[Hopfield, PNAS 1982]
[SC Monasson Weight Plos Comp Bio 2016]
[Barra, Bernacchia,Santucci, Contucci, Neural Network 2012]
Ising/Potts model (BM) explains correlations by couplings J_{ij} between nodes (variables)

RBM explains data through their common features
Combinations of features can, in turn, generate new data
Learning distributions over data

Data space

\[\{A, C, D, E, \ldots, Y, \ldots\}^N \] (protein sequences)
Learning distributions over data

Set of all functional sequences

Data space

\[\{A, C, D, E, \ldots, Y, -\}^N\] (protein sequences)
Learning Representations of data

Set of all functional sequences

Data space

{\{A, C, D, E, .., Y, -\}}^N (protein sequences)

Representation space

{\{h\}}^M (features)
Learning Representations of data

Set of all functional sequences

Data space \mathcal{V}_N -> Genotype

$\{A, C, D, E, \ldots, Y, \ldots\}^N$ (protein sequences)

[Protein bio-chemical properties]

Representation space \mathcal{V}_i -> Phenotype

h_1 (type II) (specificity)

h_2 (activity)

$\{h\}^M$ (features)
Learning Representations of data

Set of all functional sequences

Data space

$\{A, C, D, E, \ldots, Y, -\}^N$ (protein sequences)

Representation space

$\{h\}^M$ (features)

$P(h|v)$

[Protein bio-chemical properties]

h_2 (activity)

(type I) (type II) (specificity)
Learning Representations of data

Set of all functional sequences

\[V_N \]

\[P(h|v) \]

\[P(v|h) \]

[Protein bio-chemical properties]

\(h_2 \) (activity)

\(h_1 \) (type I)

\(h_3 \) (type II) (specificity)

Data space

Representation space

\(\{A, C, D, E, \ldots, Y, -\}^N \) (protein sequences)

\(\{h\}^M \) (features)
Learning Representations of data

Set of all functional sequences

Data space

Representation space

\[\{A, C, D, E, \ldots, Y, -\}^N \] (protein sequences)
Restricted Boltzmann Machines

- **Graphical model** constituted by two sets of random variables that are coupled together.

\[
P(v, h) = \frac{1}{Z} \exp\[E(v, h) \]
\]

\[
E(v, h) = g_i(v_i) + U_\mu(h_\mu) + w_{i\mu}(v_i)h_\mu
\]

- Visible layer (binary/potts r.v.)
- Hidden layer

\[
N \text{ Visible layer (binary/potts r.v.)}
\]

\[
M
\]

\[
U_\mu(h_\mu)
\]

\[
w_{i\mu}
\]

\[
g_i(v_i)
\]
Restricted Boltzmann Machines

- **Graphical model** constituted by two sets of random variables that are coupled together.

\[
P(v, h) = \frac{1}{Z} \exp \left[-E(v, h) \right]
\]

\[
E(v, h) = g_i(v_i) + U_\mu(h_\mu) + w_{i\mu}(v_i)h_\mu
\]

Given an input configuration, the hidden unit μ receives an input:

\[
I_\mu(v) = \sum_i w_{i\mu}(v_i)
\]

Which determines the probability of its activity:

\[
P(h_\mu | v) \propto \exp \left(-U_\mu(h_\mu) + h_\mu I_\mu(v) \right)
\]
Restricted Boltzmann Machines

- **Graphical model** constituted by two sets of random variables that are coupled together.

\[
P(v, h) = \frac{1}{Z} \exp \left[- E(v, h) \right]
\]

\[
E(v, h) = \sum_i g_i(v_i) + \sum_{\mu} U_{\mu}(h_{\mu}) + \sum_{i, \mu} w_{i\mu}(v_i) h_{\mu}
\]

Given an hidden unit configuration the visible unit takes the value \(v_i\) with probability

\[
P(v_i|h) \propto \exp \left(g_i(v_i) + \sum_{\mu} h_{\mu} w_{i\mu}(v_i) \right).
\]
Restricted Boltzmann Machines

- **Graphical model** constituted by two sets of random variables that are coupled together.

\[
P(v, h) = \frac{1}{Z} \exp \left[E(v, h) \right]
\]

\[
E(v, h) = \sum_i g_i(v_i) + \sum_{\mu} U_\mu(h_\mu) \sum_{i,\mu} w_{i\mu}(v_i)h_\mu
\]

- RBM learns a **probability distribution** over the visible layer.

\[
P(v) = \sum_{h_\mu} d h_\mu P \left(v, \{ h_\mu \} \right) \frac{1}{Z_{\text{eff}}} \exp \left[-E_{\text{eff}}(v) \right]
\]

RBM are generative models, trained through unsupervised learning. Learning is done by finding parameters maximizing the Likelihood.
Parameters of RBM and data-representational phases

- Number of Hidden Units M
- Shape and parameters of Potential $\mathcal{U}_\mu(h_\mu)$
- Input Fields $g_i(v_i)$ and weights $W_{i\mu}$ and their sparsity (by adding a L_1 regularization)

Parameters determined through training

Depending on such parameters there are different data-representational phases, separated by phase transitions

We use Double Relu Units
The interpretability-performance trade-off

\[\lambda_1^2 = 0.25 \]

\[
\langle \log P(v) \rangle_{MSA} - \frac{\lambda_f}{2} \sum_{i,v} g_i(v)^2 - \frac{\lambda_1^2}{2qN} \sum_{\mu} \left(\sum_{i,v} |w_{i\mu}(v)| \right)^2
\]
The interpretability-performance trade-off

\[\lambda_1^2 = 0.25 \]

\[\lambda_1^2 = 0 \]

\[\log P(v)_{MSA} = \frac{\lambda_f}{2} \sum_{i,v} g_i(v)^2 - \frac{\lambda_1^2}{2qN} \sum_{\mu} \left(\sum_{i,v} |w_{i\mu}(v)| \right)^2 \]
The interpretability-performance trade-off

\[
\lambda_1^2 = 0.25
\]

\[
\lambda_1^2 = 0
\]

\[
\lambda_1^2 = 0.03
\]

\[
\langle \log P(v) \rangle_{MSA} = \frac{\lambda_f}{2} \sum_{i,v} g_i(v)^2 - \frac{\lambda_1^2}{2qN} \sum_{\mu} \left(\sum_{i,v} |w_{i\mu}(v)| \right)^2
\]

Tubiana Cocco Monasson, elife, 2019,
Protein families studied

- **Lattice Proteins**
 Jacquin et al. PLOS CB 2016

- **WW Domain**
 Russ et al. Nature 2005

- **Kunitz Domain**
 Morcos et al. PNAS 2011

- **Hsp70 chaperone**
 Smock et al. Mol. Sys. Biol. 2010
 Malinverni et al. PLOS CB 2015

N=27 aa
N=31 aa
N=54 aa
N=661 aa
The WW Domain

• N=30-40 amino-acids (very small)

• Role:
 • Gene regulation, transcription
 • RNA processing
 • Receptor signaling

• Recognition of Proline-Rich Linear Motifs
• 4 types of ligand specificities
WW: a small binding domain

Sequences have different binding affinity:

Sequence	**Ligand**
group I: | PPxY
group II: | PPLP
group III: | PPR
group IV: | PS/PT

Sector Analysis: 8 positions very correlated

[W.P. Russ...R. Ranganathan, Nature 2005
N Halabi,...R.Ranganathan 2009]
Similarly to principal components in PCA: features $w_{i\mu}$

[A Raussel.. A Valencia 2010, N Halabi,...R.Ranganathan 2009]

Tubiana Cocco Monasson 2018, arXiv: 1803.08718 q.bio
RBM features

Similarly to principal components in PCA: features $w_{i\mu}$

[A Raussel.. A Valencia 2010, N Halabi,...R.Ranganathan 2009]
RBM features

Similarly to principal components in PCA: features $w_{i\mu}$

RBM features

Tubiana Cocco Monasson, elife, 2019,
Motif recognized:

- **Type I**: PPXY
- **Type II**: PPLP
- **Type III**: PR
- **Type IV**: [p(S/T)P]

Experimental data from:
- Russ et al. Nature 2005
- Espanel and Sudol J. Biol. Chem. 1999
- Otte et al. Protein Science 2003

RBM features reflect specificity

Tubiana Cocco Monasson, elife, 2019,
Artificial Sequence Generation with RBM

Tubiana Cocco Monasson, elife, 2019,
Artificial Sequence Generation with RBM

Type I-like binding specificity + Short loop

Type II/III/IV-like binding specificity + Short loop → Type II/III

Type II/III/IV-like binding pocket + Long loop → Type IV

Artificial Sequences
Artificial Sequence Generation with RBM

Type I-like binding specificity + Short loop

Type II/III/IV-like binding specificity + Short loop → Type II/III

Type II/III/IV-like binding pocket + Long loop → Type IV

Type II/III/IV-like binding pocket + Long loop → Type IV
RBM WW Features:
A contact mode
Hsp70 chaperone protein

- N>600 amino-acids
- Multidomain.
 - Nucleotide Binding Domain (NBD)
 - Substrate Binding Domain (SBD)
 - LID Domain
 - Linker

Function:
- Traps substrate proteins between the LID and the SBD
- LID/SBD cavity is either open or closed

Roles:
- Assist protein folding
- Transport proteins for degradation

ATP bound conformation (open) ADP bound conformation (closed)
Interdomain features control allostery
Conclusion

• Summary:
 – Under specific conditions (weight sparsity, non-linearity), RBM learn compositional representations of data.
 – They achieve a good trade-off between interpretability and performance
 – RBM can extract meaningful features from sequence and cluster protein subfamilies with respect to different properties eg. stability, binding specificity, allostery..
 - RBM can Generate sequences with specific properties (in given clusters)

• But:
 -RBM less well known and studied Model than BM. Training not guarantee to work well: Log-Likelihood is not a convex function ...

• Outlook:
 – Experimental validation of designed sequences