Extracting features from protein sequence data with Restricted Boltzmann Machines

Rémi Monasson, Jérôme Tubiana

Laboratory for Theoretical Physics, Ecole Normale Superieure & CNRS, Paris

Simona Cocco

Laboratory for Statistical Physics, Ecole Normale Superieure & CNRS, Paris

The Artificial Intelligence and Physics Conference, Orsay, march 22, 2019

[Russ et al. 2005]

Constraints on protein sequences

- **<u>Stability</u>**: Must fold, and only in the native(s) fold(s)
- <u>Affinity:</u> Must bind to target ligand
- **Specificity:** Must preferentially bind a specific ligands...
- Catalytic Activity: Must promote reaction within the target ligand
- <u>Allostery:</u> Must change conformation upon partner binding...

LPPGWEKRMSRSSGRVYYFNHITNASQWERP LPSGWEKRMSRSSGRVYYFNHITNASQWERP LPPGWEKRMSRSSGRVYYFNHITNASQWERP LPAGWEMAKTSS-GQRYFLNHIDQTTTWQDP LPAGWEMAKTSS-GQRYFLNHNDQTTTWQDP ---GWIEYTLPD-GNVFYYNDKNNEFNWERP LPKPWIVKISRSRNRPYYFNTETHESLWEPP

Multiple Sequence Alignment of Functional WW-domain sequences from diverse organism and genes (Source: PFAM)

LPPGWEKRMSRSSGRVYYFNHITNASQWERP LPSGWEKRMSRSSGRVYYFNHITNASQWERP LPPGWEKRMSRSSGRVYYFNHITNASQWERP LPAGWEMAKTSS-GQRYFLNHIDQTTTWQDP LPAGWEMAKTSS-GQRYFLNHNDQTTTWQDP ---GWIEYTLPD-GNVFYYNDKNNEFNWERP LPKPWIVKISRSRNRPYYFNTETHESLWEPP

Functional WW-domain sequences from diverse organism and genes (Source: PFAM) LPAGWEMAKTSS-GQRYFLNHIDQTTTRQDP LPAGYEMAKTSS-GQRYFLNHIDQTTTWQDP LPAGWEMAKTSS-GQRWFLNHIDQTTTWQDP LPAGWEMAKDSS-GQRYFLNHIDQTTTWQDP

Examples of non-functional WW sequences obtained by mutagenesis (Fowler et al. Nature Methods 2011)

LPPGWEKRMSRSSGRVYYFNHITNASQWERP LRSGWEKRMSRSSGRVYYFNHITNASQWERP LPPGWEKRMSRSSGRVYYFNHITNASQWERP LPAGWEMAKTSS-GQRYFLNHIDQTTTWQDP LPAGWEMAKTSS-GQRYFLNHNDQTTTWQDP ---GWIEYTLPD-GNVFYYNDKNNEFNWERP LPKPWIVKISRSRNRPYYFNTETHESLWEPP

Functional WW-domain sequences from diverse organism and genes (Source: PFAM)

> <50% Sequence identity. Same activity *in vitro* (Otte et al. Protein Science 2003)

LPAGWEMAKTSS-GQRYFLNHIDQTTTRQDP LPAGYEMAKTSS-GQRYFLNHIDQTTTWQDP LPAGWEMAKTSS-GQRWFLNHIDQTTTWQDP LPAGWEMAKDSS-GQRYFLNHIDQTTTWQDP

Examples of non-functional WW sequences obtained by mutagenesis (Fowler et al. Nature Methods 2011)

LPPGWEKRMSRSSGRVYYFNHITNASQWERP LPSGWEKRMSRSSGRVYYFNHITNASQWERP LPPGWEKRMSRSSGRVYYFNHITNASQWERP LPAGWEMAKTSS-GQLYTLNHIDQTTTWQDP LPAGWEMAKTSS-GQRYTLNHNDQTTTWQDP ---GWIEYTLPD-GNVFYYNDKNNEFNWERP LPKPWIVKISRSRNRPYYFNTETHESLWEPP

Multiple Sequence Alignment of Functional WW-domain sequences from diverse organism and genes (Source: PFAM)

> <50% Sequence identity. Same activity *in vitro* (Otte et al. Protein Science 2003)

Differ by a single amino-acid

LPAGWEMAKTSS-GQRYFLNHIDQTTTRQDP LPAGYEMAKTSS-GQRYFLNHIDQTTTWQDP LPAGWEMAKTSS-GQRWFLNHIDQTTTWQDP LPAGWEMAKDSS-GQRYFLNHIDQTTTWQDP

Examples of non-functional WW sequences obtained by mutagenesis (Fowler et al. Nature Methods 2011)

• What makes a protein sequence functional ?

• Can we find biologically relevant representations of these sequences ?

• Can we design functional artificial sequences ?

Mutational Landscape of Proteins

(Source: PFAM)

Mutational Landscape

Mutational Landscape of Proteins

Data: Multi Sequence Alignment (MSA)

(Source: PFAM, typically 10^3 - 10^5 sequences)

Model: Probability of a sequence

Infer from the data the Probability of a sequence $P(v_1...,v_N)$ to be a good sequence for that protein.

> $v_i = A, C, D, ..., W, -$, are the 20 amino acid of the protein +gap symbol Potts (categorigal) variables

Mutational Landscape of Proteins

(Source: PFAM, typically 10³-10⁵ sequences)

Model: Probability of a sequence

Infer from the data the Probability of a sequence $P(v_1...,v_N)$ to be a good sequence for that protein.

v_i =A,C,D....W,-, are the 20 amino acid of the protein +gap symbol Potts (categorigal) variables

Model inference from data

Model inference from data

Network inference from data

[Morcos ... Weigt, PNAS 2011 , Ekeberg, Aurell (2015), Hopf, Colwell et al Cell (2012), Baker (2014), S.C.... Weigt (2017)]

Network inference from data

Leve

PLPPGWEERIHLD-GRTFYIDHNSKITQWEDPRLQ PLPDNWEMAYTEK-GEVYFIDHNTKTTSWLDPRLA PLPPGWEIRYTAA-GERFFVDHNTRRTTFEDPRPG LSKCPWKEYKSDS-GKPYYYNSQTKESRWAKPKEL GAASGWTEHKSPD-GRTYYYNTETKQSTWEKPDDL GLPKPWIVKISRSRNRPYFFNTETHESLWEPPAAT -MRGEWQEFKTPA-GKKYYYNKNTKQSRWEKPNLK SVESDWSVHTNEK-GTPYYHNRVTKQTSWIKPDVL DLPAGWMRVQDTS-G-TYYWHIPTGTTQWEPPGRA AVKTVWVEGLSED-GFTYYYNTETGESRWEKPDDF

Generate New Sequences by Monte Carlo simulations

 $J_{ij}(v_i,v_j)$

 $\Sigma_{i} w(v_{i})$

Energy= $-\log P(v_1....v_N)$

Direct Coupling Analysis:

[Morcos ... Weigt, PNAS 2011 , Ekeberg, Aurell (2015) Hopf, Colwell et al Cell (2012), Baker(2014), S.C. ...Weigt(2017)]

✓Give structural informations
✓Model is generative
✓Predicts cost of mutations and design new sequences

Does not gives direct information on the 'good' sequences

Features extraction from data

1. the

PLPPGWEERIHLD-GRTFYIDHNSKITQWEDPRLQ PLPDNWEMAYTEK-GEVYFIDHNTKTTSWLDPRLA PLPPGWEIRYTAA-GERFFVDHNTRRTTFEDPRPG LSKCPWKEYKSDS-GKPYYYNSQTKESRWAKPKEL GAASGWTEHKSPD-GRTYYYNTETKQSTWEKPDDL GLPKPWIVKISRSRNRPYFFNTETHESLWEPPAAT -MRGEWQEFKTPA-GKKYYYNKNTKQSRWEKPNLK SVESDWSVHTNEK-GTPYYHNRVTKQTSWIKPDVL DLPAGWMRVQDTS-G-TYYWHIPTGTTQWEPPGRA AVKTVWVEGLSED-GFTYYYNTETGESRWEKPDDF Energy= $-\log P(v_1...,v_N)$

PCA, Sparse PCA, and Sector Analysis :

From correlation matrix extract principal components: features w(v_i) Project sequences on them to characterize the wells of the energy landscape [A Raussel.. A Valencia 2010, N Halabi,...R.Ranganathan 2009]

But are not generative ...

The Hopfield Model

 $\mathsf{E}(\mathsf{V}) = -\frac{1}{2} \sum_{i < i} \mathsf{J}_{ij} (\mathsf{v}_{i}, \mathsf{v}_{j}) \qquad \qquad \mathsf{E}(\mathsf{V}) = -\frac{1}{2} \sum_{\mu=1}^{\mathsf{M}} (\sum_{i} \mathsf{w}_{i}^{\mu} (\mathsf{v}_{i}))^{2}$

One can built up a coupling matrix storing M features or 'patterns' as energy minima of the model (associative memories of the network):

$$J_{ij}(\mathbf{v}_{i},\mathbf{v}_{j}) = \sum_{\mu=1}^{M} w_{i}^{\mu}(\mathbf{v}_{i}) w_{j}^{\mu}(\mathbf{v}_{j})$$

[Hopfield, PNAS 1982][SC Monasson Weight Plos Comp Bio 2016][Barra, Bernacchia, Santucci, Contucci, Neural Network 2012]

Large probability sequences have large scalar products with the feature -> 'look like' it

 $\Sigma_i \mathbf{w}_i^{\mu}(\mathbf{v}_i)$

Different Network Architecture

Boltzmann Machine

Ising/Potts model (BM) explains correlations by couplings J_{ij} between nodes (variables)

Restricted Boltzmann Machine

Hidden layer

Visible layer (binary r.v.)

RBM explains data through their common features Combinations of features can, in turn, generate new data

Learning distributions over data

Data space

 $\{A, C, D, E, ..., Y, -\}^N$ (protein sequences)

Learning distributions over data

Set of all functional sequences

Data space

 $\{A, C, D, E, ..., Y, -\}^N$ (protein sequences)

Set of all functional sequences

[Protein bio-chemical properties]

Set of all functional sequences

Set of all functional sequences

N1 V2 V3

Set of all functional sequences

Data space

Representation space

 $\{A, C, D, E, ..., Y, -\}^N$ (protein sequences)

• **Graphical model** constituted by two sets of random variables that are coupled together.

$$P(v,h) = \frac{1}{Z} \exp\left[-E(v,h)\right]$$

$$E(v,h) = - \mathop{a}\limits_{i} g_i(v_i) + \mathop{a}\limits_{\mu} U_{\mu}(h_{\mu}) - \mathop{a}\limits_{i,\mu} W_{i\mu}(v_i)h_{\mu}$$

• **Graphical model** constituted by two sets of random variables that are coupled together.

$$P(v,h) = \frac{1}{Z} \exp\left[-E(v,h)\right]$$

$$E(v,h) = - \mathop{\text{a}}_{i} g_{i}(v_{i}) + \mathop{\text{a}}_{\mu} U_{\mu}(h_{\mu}) - \mathop{\text{a}}_{i,\mu} w_{i\mu}(v_{i})h_{\mu}$$

Given an input configuration, the hidden unit μ Receives an input:

$$I_{\mu}(\mathbf{v}) = \sum_{i} w_{i\mu}(v_i) \; .$$

Which determines the probability of its activity:

$$P(h_{\mu}|\mathbf{v}) \propto \exp\left(-\mathcal{U}_{\mu}(h_{\mu}) + h_{\mu}I_{\mu}(\mathbf{v})\right)$$

• **Graphical model** constituted by two sets of random variables that are coupled together.

$$P(v,h) = \frac{1}{Z} \exp\left[-E(v,h)\right]$$

$$E(v,h) = - \mathop{\text{a}}_{i} g_{i}(v_{i}) + \mathop{\text{a}}_{\mu} U_{\mu}(h_{\mu}) - \mathop{\text{a}}_{i,\mu} w_{i\mu}(v_{i})h_{\mu}$$

Given an hidden unit configuration the visible unit takes the value v_i with probability

$$P(v_i|\mathbf{h}) \propto \exp\left(g_i(v_i) + \sum_{\mu} h_{\mu} w_{i\mu}(v_i)\right).$$

• **Graphical model** constituted by two sets of random variables that are coupled together.

$$P(v,h) = \frac{1}{Z} \exp\left[-E(v,h)\right]$$

$$E(v,h) = - \mathop{\text{a}}_{i} g_{i}(v_{i}) + \mathop{\text{a}}_{\mu} U_{\mu}(h_{\mu}) - \mathop{\text{a}}_{i,\mu} w_{i\mu}(v_{i})h_{\mu}$$

• RBM learns a **probability distribution** over the **visible layer**.

$$P(v) = \grave{0} \widetilde{O}_{\mu} dh_{\mu} P(v, \{h_{\mu}\}) \circ \frac{1}{Z_{eff}} \exp \left(\underbrace{E}_{eff}(v) \right)$$

RBM are generative models, trained through unsupervised learning Learning is done by finding parameters maximizing the Likelihood

Parameters of RBM and data-representational phases

- Number of Hidden Units M
- Shape and parameters of Potential $\mathcal{U}_{\mu}(h_{\mu})$
- Input Fields $g_i(v_i)$ and weights $\mathcal{W}_{i\mu}$ and their sparsity (by adding a L₁ regularization)

Parameters determined through training

Depending on such parameters there are different data-representational phases, separated by phase transitions

[J. Tubiana, R.Monasson, Physical Review Letters 118, 138301 (2017)]

We use Double Relu Units

Hidden layer

N Visible layer (binary/potts r.v.)

The interpretability-performance trade-off

$$\langle \log P(\mathbf{v}) \rangle_{MSA} - \frac{\lambda_f}{2} \sum_{i,v} g_i(v)^2 - \frac{\lambda_1^2}{2qN} \sum_{\mu} \left(\sum_{i,v} |w_{i\mu}(v)| \right)^2$$

The interpretability-performance trade-off

 $/_{1}^{2}$

$$= 0.25 \qquad \begin{array}{c} 1 \\ \text{sto} \\ 0 \\ -1 \\ 0 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ \end{array}$$

$$\langle \log P(\mathbf{v}) \rangle_{MSA} - \frac{\lambda_f}{2} \sum_{i,v} g_i(v)^2 - \frac{\lambda_1^2}{2qN} \sum_{\mu} \left(\sum_{i,v} |w_{i\mu}(v)| \right)^2$$

The interpretability-performance trade-off

Protein families studied

- Lattice Proteins Shaknovich et al. J. Chem. Phys. 1990 Jacquin et al. PLOS CB 2016
- WW Domain

Russ et al. Nature 2005

Kunitz Domain

Morcos et al. PNAS 2011

• Hsp70 chaperone

Smock et al. Mol. Sys. Biol. 2010 Malinverni et al. PLOS CB 2015

The WW Domain

- N=30-40 amino-acids (very small)
- Role:
 - Gene regulation, transcription
 - RNA processing
 - Receptor signaling
- Recognition of Proline-Rich Linear Motifs
- 4 types of ligand specificities

WW: a small binding domain

PLPPGWEERIHLD-GRTFYIDHNSKITQWEDPRLQ
 PLPDNWEMAYTEK-GEVYFIDHNTKTTSWLDPRLA
 PLPPGWEIRYTAA-GERFFVDHNTRRTTFEDPRPG
 LSKCPWKEYKSDS-GKPYYYNSQTKESRWAKPKEL
 GAASGWTEHKSPD-GRTYYYNTETKQSTWEKPDDL
 GLPKPWIVKISRSRNRPYFFNTETHESLWEPPAAT
 -MRGEWQEFKTPA-GKKYYYNKNTKQSRWEKPNLK
 SVESDWSVHTNEK-GTPYYHNRVTKQTSWIKPDVL
 DLPAGWMRVQDTS-G-TYYWHIPTGTTQWEPPGRA
 AVKTVWVEGLSED-GFTYYYNTETGESRWEKPDDF

Loop II

Loop I

Sequence	Ligand
group I:	PPxY
group II:	
group IV:	PS/PT

Sector Analysis: 8 positions very correlated

[W.P. Russ...R. Ranganathan, Nature 2005 N Halabi,...R.Ranganathan 2009]

Visible layer (binary r.v.)

Similarly to principal components in PCA: features $w_{i\mu}$ [A Raussel.. A Valencia 2010, N Halabi,...R.Ranganathan 2009]

Tubiana Cocco Monasson 2018, arXiv: 1803.08718 q.bio

Similarly to principal components in PCA: features $w_{i\mu}$ [A Raussel.. A Valencia 2010, N Halabi,...R.Ranganathan 2009]

Visible layer (binary r.v.)

Tubiana Cocco Monasson 2018, arXiv: 1803.08718 q.bio

Tubiana Cocco Monasson 2018, arXiv: 1803.08718 q.bio

Tubiana Cocco Monasson, elife, 2019,

Experimental data from:

Russ et al. Nature 2005 Espanel and Sudol J. Biol. Chem. 1999 Otte et al. Protein Science 2003

RBM features reflect specificity

Tubiana Cocco Monasson, elife, 2019,

Artificial Sequence Generation with RBM

Tubiana Cocco Monasson, elife, 2019,

Artificial Sequence Generation with RBM

Type II/III/IV-like binding specificity + Short loop → Type II/III

Type II/III/IV-like binding pocket + Long loop → Type IV

Artificial Sequences

Artificial Sequence Generation with RBM

Type II/III/IV-like binding specificity + Short loop → Type II/III

Type II/III/IV-like binding pocket + Long loop → Type IV

RBM WW Features: A contact mode

Hsp70 chaperone protein

- N>600 amino-acids
- Multidomain.
 - Nucleotide Binding Domain (NBD)
 - Substrate Binding Domain (SBD)
 - LID Domain
 - Linker

Function:

- Traps substrate proteins between the LID and the SBD
- LID/SBD cavity is either open or close Roles:
 - Assist protein folding
 - Transport proteins for degradation

Interdomain features control allostery

Conclusion

- Summary:
 - Under specific conditions (weight sparsity, non-linearity), RBM learn compositional representations of data.
 - They achieve a good trade-off between interpretability and performance
 - RBM can extract meaningful features from sequence
 and cluster protein subfamilies with respect to different proc

and cluster protein subfamilies with respect to different properties eg. stability, binding specificity, allostery..

- RBM can Generate sequences with specific properties (in given clusters)

• But:

-RBM less well known and studied Model than BM. Training not guarantee to work well: Log-Likelihood is not a convex function ...

- Outlook:
 - Experimental validation of designed sequences