Distributional Reinforcement Learning

Rémi Munos

Marc Bellemare, Will Dabney, Georg Ostrovski, Mark Rowland

DeepMindParis
Deep RL at DeepMind

Go chess shogi

Starcraft
Deep RL at DeepMind

Atari 57 games
DMLab 30
Control suite

One algorithm for all!
Distributional-RL

Outline:

- Brief introduction to (deep) reinforcement learning
- Intro to distributional-RL
 - Theory
 - Representation of distributions
 - Experiments on Atari
- Interactions between RL and deep-learning
Introduction to Reinforcement Learning (RL)

- Learn to make good decisions
- No supervision. Learn from rewards

Two approaches:
- Value based ([Bellman, 1957]'s dynamic programming)
- Policy based ([Pontryagin, 1956]'s maximum principle)
The RL agent in its environment

\[x_{t+1} \sim p(\cdot | x_t, a_t) \]

\[a_t \sim \pi(\cdot | x_t) \]
Bellman’s dynamic programming

- Define the value function Q^π of a policy $\pi(a|x)$:

\[
Q^\pi(x, a) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t \mid x, a, \pi \right],
\]

and the optimal value function:

\[
Q^*(x, a) = \max_{\pi} Q^\pi(x, a).
\]

(expected sum of future rewards if the agent plays optimally).

- Bellman equations:

\[
Q^\pi(x, a) = r(x, a) + \gamma \mathbb{E}_{x'} \left[\sum_{a'} \pi(a' \mid x') Q^\pi(x', a') \bigg| x, a \right]
\]

\[
Q^*(x, a) = r(x, a) + \gamma \mathbb{E}_{x'} \left[\max_{a'} Q^*(x', a') \bigg| x, a \right]
\]

- Optimal policy $\pi^*(x) = \arg \max_a Q^*(x, a)$
Represent Q using a neural network

- Represent value function $Q_w(x, a)$ with a neural net.
- How to train $Q_w(x, a)$? We don’t have supervised values. We only know we want

$$Q_w(x, a) \approx r(x, a) + \gamma \mathbb{E}_{x'} \left[\max_{a'} Q_w(x', a') \big| x, a \right]$$

- After a transition $x_t, a_t \rightarrow x_{t+1}$,

train $Q_w(x_t, a_t)$ to predict $r_t + \gamma \max_a Q_w(x_{t+1}, a)$

- Minimize loss $\left(r_t + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right)^2$.

- At the end of learning, $\mathbb{E} [\delta_t] = 0$.
Deep Q-Networks (DQN) [Mnih et al. 2013, 2015]

Problems: (1) data is not iid, (2) target values change

Idea: be as close as possible to supervised learning

1. Dissociate acting from learning:
 - Interact with the environments by following behavior policy
 - Store transition samples x_t, a_t, x_{t+1}, r_t into a memory replay
 - Train by replaying iid from memory

2. Use target network fixed for a while

\[
\text{loss} = \left(r_t + \gamma \max_a Q_{\text{target}}(x_{t+1}, a) - Q_w(x_t, a_t) \right)^2
\]

Properties: DQN is off-policy, and uses 1-step bootstrapping.
DQN network
DQN Results in Atari
Challenges of deep RL

Rewards may be sparse...
Challenges of deep RL

Rewards may be sparse...

Intrinsic motivation, curiosity, learning progress, empowerment, ..
Challenges of deep RL

Rewards may be sparse...

Intrinsic motivation, curiosity, learning progress, empowerment, ...

Learn representations in an unsupervised manner
Challenges of deep RL

Rewards may be sparse...

Intrinsic motivation, curiosity, learning progress, empowerment, ..

Learn representations in an unsupervised manner

Learn from a teacher
Challenges of deep RL

Rewards may be sparse...

Intrinsic motivation, curiosity, learning progress, empowerment, ..

Learn representations in an unsupervised manner

Learn from a teacher

Sample efficiency
Distributional-RL

- Introduction
- Elements of theory
- Neural net representations
- Experiments on Atari
- Conclusion
Intro to distributional RL

Expected immediate reward

\[\mathbb{E}[R(x)] = \frac{1}{36} \times (-2000) + \frac{35}{36} \times (200) = 138.88 \]

Random variable reward:

\[R(x) = \begin{cases}
-2000 & \text{w.p. } 1/36 \\
200 & \text{w.p. } 35/36
\end{cases} \]
The return = sum of future discounted rewards

\[R(x_0) + \gamma R(x_1) + \gamma^2 R(x_2) \ldots \]

- Returns are often complex, multimodal
- Modelling the expected return hides this intrinsic randomness
- Model all possible returns!
The r.v. Return $Z^\pi(x, a) = \sum_{t \geq 0} \gamma^t r(x_t, a_t) \bigg|_{x_0 = x, a_0 = a, \pi}$

Captures intrinsic randomness from:

- Immediate rewards
- Stochastic dynamics
- Possibly stochastic policy
The expected Return

The value function

\[Q^\pi(x, a) = \mathbb{E}[Z^\pi (x, a)] \]

Satisfies the Bellman equation

\[Q^\pi(x, a) = \mathbb{E} [r(x, a) + \gamma Q^\pi(x', a')] \]

where \(x' \sim p(\cdot | x, a) \) and \(a' \sim \pi(\cdot | x') \)
Distributional Bellman equation?

We would like to write a Bellman equation for the distributions:

\[Z^\pi(x, a) \overset{D}{=} R(x, a) + \gamma Z^\pi(x', a') \]

where \(x' \sim p(\cdot|x, a) \) and \(a' \sim \pi(\cdot|x') \)

Does this equation make sense?
Distributional Bellman operator

\[T^\pi Z(x, a) = R(x, a) + \gamma Z(x', a') \]

Does there exist a fixed point?
Properties

Theorem [Rowland et al., 2018]

\[\Gamma^\pi \text{ is a contraction in Cramer metric} \]

\[\ell_2(X, Y) = \left(\int_{\mathbb{R}} (F_X(t) - F_Y(t))^2 \, dt \right)^{1/2} \]

Theorem [Bellemare et al., 2017]

\[\Gamma^\pi \text{ is a contraction in Wasserstein metric,} \]

\[w_p(X, Y) = \left(\int_{\mathbb{R}} (F_X^{-1}(t) - F_Y^{-1}(t))^p \, dt \right)^{1/p} \]

(but not in KL neither in total variation)

Intuition: the size of the support shrinks.
Distributional dynamic programming

For a given policy \(\pi \), the distributional Bellman operator

\[
T^\pi Z(x, a) = R(x, a) + \gamma Z(x', a')
\]

Is a contraction mapping, thus has a unique fixed point, which is \(Z^\pi \)

And the iterate \(Z \leftarrow T^\pi Z \) converges to \(Z^\pi \)
The control case

Define the distributional Bellman optimality operator

\[T^* Z(x, a) \overset{D}{=} r(x, a) + \gamma Z(x', \pi_Z(x')) \]

where \(x' \sim p(\cdot|x, a) \) and \(\pi_Z(x') = \text{arg max}_{a'} \mathbb{E}[Z(x', a')] \)

Is this operator a contraction mapping?
The control case

Define the distributional Bellman optimality operator

\[TZ(x, a) \overset{D}{=} r(x, a) + \gamma Z(x', \pi_Z(x')) \]

where \(x' \sim p(\cdot|x, a) \) and \(\pi_Z(x') = \arg \max_{a'} \mathbb{E}[Z(x', a')] \)

Is this operator a contraction mapping?

\textbf{No!} (it’s not even continuous)
The dist. opt. Bellman operator is not smooth

Consider distributions Z_{ε}

If $\varepsilon > 0$ we back up a bimodal distribution

If $\varepsilon < 0$ we back up a Dirac in 0

Thus the map $Z_{\varepsilon} \mapsto T Z_{\varepsilon}$ is not continuous
Distributional Bellman optimality operator

Theorem [Bellemare et al., 2017]

if the optimal policy is unique, then the iterates
\[Z_{k+1} \leftarrow T Z_k \]
converge to \[Z^{\pi^*} \]

Intuition: The distributional Bellman operator preserves the mean, thus the mean will converge to the optimal policy \[\pi^* \] eventually. If the policy is unique, we revert to iterating \[T^{\pi^*} \], which is a contraction.
How to represent distributions?

- Categorical
- Inverse CDF for specific quantile levels
- Parametric inverse CDF

\[
\mathcal{Z} \xrightarrow{\tau} F_Z^{-1}(\tau)
\]
Categorical distributions

Distributions supported on a finite support \(\{z_1, \ldots, z_n\} \)

Discrete distribution \(\{p_i(x, a)\}_{1 \leq i \leq n} \)

\[
Z(x, a) = \sum_i p_i(x, a) \delta_{z_i}
\]
Projected Distributional Bellman Update

Transition

\[P^\pi Z \]

\[R + \gamma P^\pi Z \]

\[\gamma P^\pi Z \]

\[\Pi \gamma T^\pi Z \]
Projected Distributional Bellman Update

\[P^\pi Z \]

Discount / Shrink

\[\gamma P^\pi Z \]

\[R + \gamma P^\pi Z \]

\[\Pi T^\pi Z \]
Projected Distributional Bellman Update

\[P^\pi Z \]

\[\gamma P^\pi Z \]

\[R^+ \gamma P^\pi Z \]

\[\Pi_n T^\pi Z \]

Reward / Shift
Projected Distributional Bellman Update

\[P^\pi Z \]

\[R + \gamma P^\pi Z \]

\[\gamma P^\pi Z \]

\[\prod_{\pi} T^\pi Z \]

Fit / Project
Projected distributional Bellman operator

Let Π_n be the projection onto the support (piecewise linear interpolation)

Theorem: $\Pi_n T^\pi$ is a contraction (in Cramer distance)

Intuition: Π_n is a non-expansion (in Cramer distance).

Its fixed point Z_n can be computed by value iteration $Z \leftarrow \Pi_n T^\pi Z$

Theorem: $\ell^2(Z_n, Z^\pi) \leq \frac{1}{(1 - \gamma)} \max_{1 \leq i < n} |z_{i+1} - z_i|$
[Rowland et al., 2018]
Projected distributional Bellman operator

Policy iteration: iterate

- **Policy evaluation:** $Z_k = \prod_n T^{\pi_k} Z_k$

- **Policy improvement:** $\pi_{k+1}(x) = \text{arg max}_a \mathbb{E}[Z^{\pi_k}(x, a)]$

Theorem: Assume there is a unique optimal policy. Z_k converges to $Z^{\pi^*}_n$, whose greedy policy is optimal.
Distributional Q-learning

Observe transition samples $x_t, a_t \xrightarrow{r_t} x_{t+1}$

Update:

$$Z(x_t, a_t) = (1 - \alpha_t)Z(x_t, a_t) + \alpha_t \Pi_C(r_t + \gamma Z(x_{t+1}, \pi_Z(x_{t+1}))$$

Theorem

Under the same assumption as for Q-learning, assume there is a unique optimal policy π^*, then $Z \to Z_{n\pi}^*$ and the resulting policy is optimal. [Rowland et al., 2018]
DeepRL implementation
DQN

[Mnih et al., 2013]
Categorical DQN

[Bellemare et al., 2017]
Categorical DQN
Randomness from future choices
Results on 57 games Atari 2600

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>>human</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQN</td>
<td>228%</td>
<td>79%</td>
<td>24</td>
</tr>
<tr>
<td>Double DQN</td>
<td>307%</td>
<td>118%</td>
<td>33</td>
</tr>
<tr>
<td>Dueling</td>
<td>373%</td>
<td>151%</td>
<td>37</td>
</tr>
<tr>
<td>Prio. Duel.</td>
<td>592%</td>
<td>172%</td>
<td>39</td>
</tr>
<tr>
<td>C51</td>
<td>701%</td>
<td>178%</td>
<td>40</td>
</tr>
</tbody>
</table>
Categorical representation

\[p_0, p_1, p_2, \ldots, p_{n-1} \]

Fixed support, learned probabilities

... \(z_0 + i\Delta z \) ...
Quantile Regression Networks

Fixed probabilities, learned support
Inverse CDF learnt by Quantile Regression
l2-regression

\[\text{loss} = x^2 \]
l1-regression

\[loss = |x| \]
\(\frac{1}{4} \)-quantile-regression

\[
loss = \begin{cases}
\frac{1}{4}x, & \text{for } x \geq 0 \\
\frac{3}{4}x, & \text{for } x < 0
\end{cases}
\]
\[\frac{3}{4}-\text{quantile-regression} \]

\[
\text{loss} = \begin{cases}
\frac{3}{4}x, & \text{for } x \geq 0 \\
\frac{1}{4}x, & \text{for } x \geq 0
\end{cases}
\]
many-quantiles-regression

\[\text{loss} = \begin{cases}
\tau x, & \text{for } x \geq 0 \\
(\tau - 1)x, & \text{for } x \geq 0
\end{cases} \]
Quantile Regression = projection in Wasserstein!
(on a uniform grid)
QR distributional Bellman operator

Theorem: \(\Pi_{QR} T^{\pi} \) is a contraction (in Wasserstein) [Dabney et al., 2018]

Intuition: quantile regression = projection in Wasserstein

Reminder:
- \(T^{\pi} \) is a contraction (both in Cramer and Wasserstein)
- \(\Pi_n T^{\pi} \) is a contraction (in Cramer)
DQN
Quantile-Regression DQN

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQN</td>
<td>228%</td>
<td>79%</td>
</tr>
<tr>
<td>Double DQN</td>
<td>307%</td>
<td>118%</td>
</tr>
<tr>
<td>Dueling</td>
<td>373%</td>
<td>151%</td>
</tr>
<tr>
<td>Prio. Duel.</td>
<td>592%</td>
<td>172%</td>
</tr>
<tr>
<td>C51</td>
<td>701%</td>
<td>178%</td>
</tr>
<tr>
<td>QR-DQN</td>
<td>864%</td>
<td>193%</td>
</tr>
</tbody>
</table>
Implicit Quantile Networks (IQN)

Learn a parametric inverse CDF

\[\tau \mapsto F_Z^{-1}(\tau) \]
Implicit Quantile Networks for TD

\[\tau \sim \mathcal{U}[0, 1], \quad z = Z_\tau(x_t, a_t) \]

\[\tau' \sim \mathcal{U}[0, 1], \quad z' = Z_\tau(x_{t+1}, a^*) \]

\[\delta_t = r_t + \gamma z' - z \]

QR loss: \(\rho_\tau(\delta) = \delta(\tau - \mathbb{1}_{\delta < 0}) \)
Implicit Quantile Networks

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Human starts</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQN</td>
<td>228%</td>
<td>79%</td>
<td>68%</td>
</tr>
<tr>
<td>Prio. Duel.</td>
<td>592%</td>
<td>172%</td>
<td>128%</td>
</tr>
<tr>
<td>C51</td>
<td>701%</td>
<td>178%</td>
<td>116%</td>
</tr>
<tr>
<td>QR-DQN</td>
<td>864%</td>
<td>193%</td>
<td>153%</td>
</tr>
<tr>
<td>IQN</td>
<td>1019%</td>
<td>218%</td>
<td>162%</td>
</tr>
</tbody>
</table>

Almost as good as SOTA (Rainbow/Reactor) which combine prio/dueling/categorical/...
What is going on?

- We learn these distributions, but in the end we only use their mean
What is going on?

- We learn these distributions, but in the end we only use their mean

Non-trivial interactions between deep learning and RL:

- Learn richer representations
 - Same signal to learn from but more predictions
 - More predictions \rightarrow richer signal \rightarrow better representations
 - Can better disambiguate between different states (state aliasing)
- Density estimation instead of l2-regressions
 - Express RL in terms of usual tools in deep learning
What is going on?

- We learn these distributions, but in the end **we only use their mean**

Non-trivial **interactions between deep learning and RL:**

- Learn richer representations
 - Same signal to learn from but more predictions
 - More predictions → richer signal → better representations
 - Can better disambiguate between different states (state aliasing)
- Density estimation instead of l2-regressions
 - Express RL in terms of usual tools in deep learning

Now maybe we could start using those distributions? (e.g, risk-sensitive control, exploration, ...)

Thanks!

References:

- *A distributional perspective on reinforcement learning*, Bellemare, Dabney, Munos, ICML 2017
- *An Analysis of Categorical Distributional Reinforcement Learning*, Rowland, Bellemare, Dabney, Munos, Teh, AISTATS 2018
- *Distributional reinforcement learning with quantile regression*, Dabney, Rowland, Bellemare, Munos, AAAI 2018
- *Implicit Quantile Networks for Distributional Reinforcement Learning*, Dabney, Ostrovski, Silver, Munos, ICML 2018