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Deep RL at DeepMind
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Distributional-RL

Outline:

e Brief introduction to (deep) reinforcement learning

e Intro to distributional-RL
o Theory
o Representation of distributions
o Experiments on Atari

e |Interactions between RL and deep-learning



Introduction to Reinforcement Learning (RL)

» Learn to make good decisions

» No supervision. Learn from rewards

| learned to ride with RL™

Two approaches:
» Value based ([Bellman, 1957]'s dynamic programming)
» Policy based ([Pontryagin, 1956]'s maximum principle)
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The RL agent in its environment

action Qy ~ T |CCt)

$
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Bellman’s dynamic programming

» Define the value function Q™ of a policy m(alx):

Q" (x,a) = E[nytrt‘x, g 7r] ,

t>0

and the optimal value function:
Q*(x,a) = max Q™ (x, a).
s

(expected sum of future rewards if the agent plays optimally).
» Bellman equations:

Q" (x,8) = r(x,a) + 7B | > 7(a|¥)Q7(x, &)

a’

xd]

Q*(x,a) = r(x,a) + 1Ew [ max Q*(x', )

xd

» Optimal policy m*(x) = arg max, Q*(x, a)
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Represent Q using a neural network

» Represent value function Q(x, a) with a neural net.

» How to train Qu(x,a)? We don't have supervised values. We
only know we want

Qw(x,a) = r(x,a) + YEy [ma,\x Quw (X', a)|x, a]

» After a transition x;, ar — X¢41,

train Qu (x¢, a;) to predict ry + v max Qu (x¢41,a)
a

N -
N

target values

2
» Minimize loss (rt + v max Q(st+1,a) — Q(st, at)) .
a

A -

temporal (ﬁﬂ’erence St
» At the end of learning, E[§;] = 0.
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Deep Q-Networks (DQN) [Mnih et al. 2013, 2015]

Problems: (1) data is not iid, (2) target values change
Idea: be as close as possible to supervised learning

1. Dissociate acting from learning:

» Interact with the environments by following behavior policy
» Store transition samples x;, ar, X;+1, rr into a memory replay
» Train by replaying iid from memory

2. Use target network fixed for a while

2
loss = (e + 7 MaxX Quipe (Xe41,2) — Qu(xe, a2))

Properties: DQN is off-policy, and uses 1-step bootstrapping.
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DQN network
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DQN Results in Atari
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Challenges of deep RL

Rewards may be sparse...
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Challenges of deep RL

Rewards may be sparse...

Intrinsic motivation, curiosity, learning progress, empowerment, ..

Learn representations in an unsupervised manner
Learn from a teacher

Sample efficiency



Distributional-RL

Introduction

Elements of theory

Neural net representations
Experiments on Atari
Conclusion



Intro to distributional RL

2,2 LUXURY Expected immediate reward
g G - TAX g
e P , E[R(z)] = — x (~2000) + -2 x (200) = 138.88
0| | S| = e
PRICE $400 PAY $75.00 PRICE $350 .

Random variable reward:

| —2000 w.p. 1/36
R(z) = { 200 w.p. 35/36




The return = sum of future discounted rewards
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e Returns are often complex, multimodal
e Modelling the expected return hides this intrinsic randomness
e Model all possible returns!



The r.v. Return Z7(z,a) = 3,007 (24, ay)|

ro—x,ap—a,7m

@ Y A =+10

Captures intrinsic randomness from:

e Immediate rewards
e Stochastic dynamics
e Possibly stochastic policy



The expected Return

The value function Q™ (x,a) = E[Z™ (x, a)]

Satisfies the Bellman equation
Q" (z,a) = E[r(z,a) +7Q" (2, a’)]

where ' ~ p(-|z,a) and a’ ~ w(-|z")




Distributional Bellman equation?

We would like to write a Bellman equation for the distributions:

7" (z,a) =2 R(xz,a) +~vZ7 (2, a")

where =’ ~ p(-|z,a) and a’ ~ 7(:|z")

Does this equation make sense?



Distributional Bellman operator

"7z R(z,a) +vZ(x',a)
R(z,a) +~vZ(x',a)

Does there exists a fixed point?



Properties
Theorem [Rowland et al., 2018]

Tﬂ' is a contraction in Cramer metric

BxY) = /R (Fx (1) —Fy(t))2dt>1/ i

Theorem [Bellemare et al., 2017]

[ '™is a contraction in Wasserstein metric,

1/p

w(X,¥) = ([ (50 - ) ar)

(but not in KL neither in total variation)
Intuition: the size of the support shrinks.

Wasserstein



Distributional dynamic programming

For a given policy z, the distributional Bellman operator

T"Z(x,a) = R(xz,a) +vZ(z',a’)

Is a contraction mapping, thus has a unique fixed point, which is Zﬂ-

And the iterate 7 «— T 77 convergesto /7



The control case

Define the distributional Bellman optimality operator

TZ(x,a) L r(x,a) +vZ(x', w7 (x"))

where 2’ ~ p(:|z,a) and 7z (z') = argmax, E[Z(z’,a’)]

|s this operator a contraction mapping?



The control case

Define the distributional Bellman optimality operator

TZ(z,a) = r(z,a) +vZ (&', 7z (z"))
where &’ ~ p(-|z,a) and 7z (z’') = arg max, E[Z (2, a’)]

|s this operator a contraction mapping?

No! (it's not even continuous)



The dist. opt. Bellman operator is not smooth

Consider distributions Ze

If ¢ > 0 we back up a bimodal distribution
If ¢ < 0 we back up a Diracin O

Thus the map Z, +— I'Z, is not continuous



Distributional Bellman optimality operator

Theorem [Bellemare et al., 2017]

AT~ AR
if the optimal policy is unique, then the iterates | @@J
Zk-+1 +— TZ; convergetoZ7r |

Intuition: The distributional Bellman operator preserves the mean, thus
the mean will converge to the optimal policy 7* eventually. If the policy
IS unique, we revert to iterating TW*, which is a contraction.



How to represent distributions?

e C(Categorical

e Inverse CDF for specific quantile levels

e Parametric inverse CDF




Categorical distributions

Distributions supported on a finite support {zl, ce zn}

Discrete distribution {p;(x,a)}1<i<n

Z(iIZ, a) — sz'(ili, a’)dzz



Projected Distributional Bellman Update

Transition

vP" 7




Projected Distributional

PT('

Z
R+~P"Z 1
(©)

Bellman Update
Discount / Shrink

vP" 7
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Projected Distributional Bellman Update

Pz ~P"Z

(a)

+vP"Z

—_— >
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Reward / Shift




Projected Distributional Bellman Update

P"Z

R+~P"Z

—
(©)

vP" 7

—

(b)

IL,T"Z

(d)

Fit / Project




Projected distributional Bellman operator

Let II,, be the projection onto the support (piecewise linear interpolation)

Theorem:;

I1,,’T"is a contraction (in Cramer distance)

Intuition: Hn is a non-expansion (in Cramer distance).

Its fixed point /., can be computed by value iteration /Z <— 11,7 Z

Theorem:;

03(Zn, Z7) <

1
(1 =)

2 v —

[Rowland et al., 2018]



Projected distributional Bellman operator

Policy iteration: iterate
Policy evaluation: /. = 11,, T7* Z,

Policy improvement: mx+1(z) = argmaxE[Z™* (z, a)]
a

Theorem:

Assume there is a unique optimal policy.
Zk converges to Zg , Whose greedy policy is optimal.




Distributional Q-learning

r
Observe transition samples T4, Q¢ - |

Update:
Z($t, at) = (]_ — Ozt)Z(ZBt, (lt) -+ Oétnc(’l"t -+ ’YZ(Q?t_|_1, 7Tz(£lft_|_1))

Theorem

Under the same assumption as for Q-learning,
assume there is a unique optimal policy ™ [Rowland et al., 2018]
then Z — Z,,Z[* and the resulting policy is optimal.




DeepRL implementation



DQN [Mnih et al., 2013]

Actions




Categorical DON [Bellemare et al., 2017]

Actions

Q DeepMind



Categorical DQN



https://docs.google.com/file/d/1NWqqQ6HjSuoPQUYpbSbYEeRH464ubWlN/preview

Randomness from future choices
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https://docs.google.com/file/d/1evdHF5rB2iqsBi2ZT0BKRVpoUDEjEd8E/preview
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Results on 57 games Atari 2600

Mean Median >human
DQN 228% 79% 24
Double DQN 307% 118% 33
Dueling 373% 151% 37
Prio. Duel. 592% 172% 39
C51 701% 178% 40




Categorical representation

Po Py Py -
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Fixed support. learned probabilities|
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Quantile Regression Networks

Fixed [probabilities, learned [support

VA
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/ \
T ,\ \
X - .




Inverse CDF learnt by Quantile Regression




|2-regression

loss = x

mean



I1-regression

: : loss = |x|

median



Ya-quantile-regression

1
1% for x > 0
§|4 loss = ;

— 7% for x < 0

A~

Ya-quantile




%-quantile-regression

3
—x, for x > 0
4
loss =
1

——x, f >0
4:13, or r >

/A .

¥a-quantile




many-quantiles-regression

W Tx, for x > 0
=\ loss =
(t — D)x, for x >0

many-quantiles



Quantile Regression = projection in Wasserstein!

(on a uniform grid)




QR distributional Bellman operator

Theorem:

HQRTW is a contraction (in Wasserstein)

Intuition: quantile regression = projection in Wasserstein

Reminder:

e [’ is a contraction (both in Cramer and Wasserstein)

e II,,’T" is acontraction (in Cramer)

[Dabney et al., 2018]












Quantile-Regression DQN

Mean Median
DQN 228% 79%
Double DQN 307% 118%
Dueling 373% 151%
Prio. Duel. 592% 172%
C51 701% 178%

QR-DQN 864 % 193%




Implicit Quantile Networks (IQN)

_A‘

T
Learn a parametric inverse CDF J
—1
T— F, (1) 0

Qr
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Implicit Quantile Networks for TD

T~U|0,1], 2z=Z (x¢, a)
T ~U[0,1], 2 =Z (vi41,a")

5t =T+ ’YZ, — <
QR loss: p-(0) = (7 — [5<0)
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https://docs.google.com/file/d/1oaAZRWyze9nTyWw2p0ksMnHtVm4IBpLp/preview
https://docs.google.com/file/d/198D1taj8TmRRK7aeu7pi3UKQXW21Ybu3/preview
https://docs.google.com/file/d/1sT3iQXp6QEajoaJSc09ObjCbmSTir1IL/preview
https://docs.google.com/file/d/1eeVevC4AiBAbIZc84pb7xm8sGCB20QJ7/preview
https://docs.google.com/file/d/1ed73TLBTzFD1N_FVf7JGJZ5mq5XJB_rl/preview
https://docs.google.com/file/d/1KTZNBut9mVMw-ULAmexbLhjIwsTil7DA/preview

Implicit Quantile Networks

Mean Median Human starts
DQN 228% 79% 68%
Prio. Duel. 592% 172% 128%
C51 701% 178% 116%
QR-DQN 864% 193% 153%
IQN 1019% 218% 162%

Almost as good as SOTA (Rainbow/Reactor) which combine prio/dueling/categorical/...
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e \We learn these distributions, but in the end we only use their mean
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e We learn these distributions, but in the end we only use their mean
Non-trivial interactions between deep learning and RL.:

e Learn richer representations

o Same signal to learn from but more predictions

o More predictions — richer signal — better representations

o Can better disambiguate between different states (state aliasing)
e Density estimation instead of I12-regressions

o Express RL in terms of usual tools in deep learning



What is going on?

e \We learn these distributions, but in the end we only use their mean
Non-trivial interactions between deep learning and RL.:

e Learn richer representations

o Same signal to learn from but more predictions
o More predictions — richer signal — better representations
o Can better disambiguate between different states (state aliasing)

e Density estimation instead of 12-regressions
o Express RL in terms of usual tools in deep learning

Now maybe we could start using those distributions? (e.g, risk-sensitive
control, exploration, ...)



Thanks!
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