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Aurélien Decelle, Giancarlo Fissore, Cyril Furtlehner

INRIA, LRI, Université Paris-Saclay

TAU team



Restricted Boltzmann Machines (RBM)

Task: modeling high-dimensional probability distributions of empirical

data

Solution: we can use a Restricted Boltzmann Machine (RBM), a

neural-network based model

Problem: neural networks are ”black boxes”
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The RBM as a bipartite spin-glass
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Linearized mean-field equations

Mean-field equation for the visible layer of the RBM:

mv
i = sigm

ηi +
∑

j

wijm
h
j −

∑
j

wij

 (
mv = 〈s〉,mh = 〈σ〉

)
Expanding over Singular Value Decomposition (SVD) components:

wij =
∑
α

wαui,αvj,α mv
α =

∑
i

ui,αm
v
i

⇓

mv
α '

1

4
wαm

h
α

Magnetizations related to strong wα are amplified
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Dynamics & statistical ensemble

• Dynamical evolution

dwα
dt

= 〈sασα〉data − 〈sασα〉model , sα =
∑

i

siui,α

• We need to define a statistical ensemble

wij =
K∑
α=1

wαui,αvj,α + rij

wα: singular values

ui,αvj,α: singular vectors components

rij : gaussian noise

Note: we average with respect to ui , vj and the noise rij keeping

sα, σα fixed.
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Non-linear mean-field

• Thouless-Anderson-Palmer (TAP) free energy - ”numerical”

FTAP (mv ,mh) = + S(mv ) + S(mh)

−
∑

i

ηim
v
i −

∑
j

θjm
h
j −

∑
i,j

wijm
v
i m

h
j

+
∑
i,j

w2
ij

2

(
1−mv

i
2
)(

1−mh
j

2
)

• Replica symmetry framework - ”theoretical”

mv
α =

(
wαm

h
α − ηα

)
(1− qv

α)

mh
α = (wαm

v
α − θα)

(
1− qh

α

)
mv
α = Eu,v ,r (〈sα〉) mh

α = Eu,v ,r (〈σα〉)
qv
α, q

h
α: spin-glass order parameters 5



Clustering interpretation

Data get clustered in the singular space, and the fixed point solutions of

the mean-field equations serve as centroids

(a) Samples from the training set and fixed points (in red) are plotted with respect to

the strongest directions in the singular space
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Non-linear dynamics
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Phase diagram
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Ferromagnetic phase
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Conclusion

Outcomes:

• comprehensive theoretical description of the model, both in linear

and non-linear regimes

• precise characterization of the learning dynamics (and definition of a

deterministic learning trajectory)

• assessment of the role and importance of the fixed point solutions of

the mean-field equations

• clustering interpretation of the training process

• characterization of the statistical properties of the weights of the

model

Perspectives:

• introducing symmetries: translational (and rotational) invariance

• dealing with lossy datasets
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Thank you!
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Overview of the RBM model



Definition of the model

RBM model: a neural network structured as a a bipartite graph

Specifically:

• a layer of hidden units hj and a layer of visible units vi are present

• data are represented as configurations of the visible layer

• there are not connections among units in the same layer

• we restrict our treatment to the case of binary units hi , vi = 0, 1
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RBM training

• The probability of a visible configuration is given by

P(v) =
∑

h

P(h, v) =
e−Fc (v)

Z
, Z =

∑
v

e−Fc (v)

• We want to maximize P(v) for the samples belonging to the training

set

=⇒ gradient ascent over the log-likelihood logP(v)

Update rule

∆W = α
(
〈vhT 〉data − 〈vhT 〉model

)
Problem: the term 〈·〉model is intractable

Best approximate algorithm: persistence contrastive divergence

(PCD), a Monte Carlo based method
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The RBM and Statistical Physics

The RBM model is mapped to a Statistical Physics model by the

definition of an energy function

E (h, v) = −
∑

i

aivi −
∑

j

bjhj −
∑
i,j

viwijhj

P(h, v; W) =
e−E(h,v)

Z

This let us borrow analytical and algorithmic tools from statistical

physics! In particular mean-field methods.

Remark: wij are the links connecting visible and hidden units and serve as

parameters of the model
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Extended Mean Field (EMF) training

• The log-likelihood can be expressed as

logP(v) = log
e−Fc (v)

Z
= −

tractable︷ ︸︸ ︷
Fc (v) − logZ︸ ︷︷ ︸

intractable

• F = logZ is the free energy of the system and it can be

approximated exploiting a high-temperature expansion1

New update rule

∆W = α

〈vhT 〉data −
∂FTAP (m̃v , m̃h)

∂wij︸ ︷︷ ︸
tractable


1A. Georges, J. S. Yedidia,

”How to expand around mean-field theory using high-temperature expansions”,

Journal of Physics A: Mathematical and General, Volume 24, Number 9, 1991.
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EMF training

Introducing the inverse temperature β

P(h, v) =
e−βE(h,v)

Z

High-T expansion

Setting β → 0 a tractable effective free energy depending on the

magnetizations is obtained: FTAP = FTAP (mv ,mh)

Its minimization gives an approximation to F :

F ' FTAP (m̃v , m̃h),
dFTAP

dm

∣∣∣∣
m̃v ,m̃h

= 0 (1)

• magnetizations: mv = 〈v〉,mh = 〈h〉
• m̃v , m̃h are found by iterating to a fixed point the equations given

by constraint (1)
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Effective temperature

In the context of a RBM the high-T expansion is substituted by a

weak-couplings expansion (wij small) and an effective temperature is

defined:

Teff =
1

Var(W)
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Comparison of PCD and EMF trainings
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Singular Value Decomposition (SVD)

SVD is the generalization of eigenmodes decomposition to

rectangular matrices

W = UΣVT

where:

• U is an orthogonal matrix whose columns are the left singular

vectors uα
• V is an orthogonal matrix whose columns are the right singular

vectors vα
• Σ is a diagonal matrix whose elements are the singular values σα

Remark

Singular vectors uα can be visualized in pixel space
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Characterization of the modes
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A basic statistical characterization

wij =
∑
α∈bulk

σαui,αvj,α︸ ︷︷ ︸
random→ rij

+
∑

α∈outliers

σαui,αvj,α
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Updates dynamics

Introducing a time variable t we write

wij (t) =
∑
α

σα(t)µi,α(t)νj,α(t) (2)

and taking the continuous limit of the learning equations we obtain

dwij

dt
= 〈vihj〉data − 〈vihj〉model (3)

dai

dt
= 〈vi 〉data − 〈vi 〉model (4)

dbj

dt
= 〈hj〉data − 〈hj〉model (5)
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Linearized dynamics

Introducing time t

wij (t) =
∑
α

σα(t)ui,α(t)vj,α(t)

Assuming Gaussian distributions for visible and hidden nodes (with

σv , σh):

dσα
dt

= σ2
hσα

(
〈v2
α〉data −

σ2
v

1− σ2
vσ

2
hσ

2
α

)
By linear stability analysis we can find the stable fixed points

σ2
α =


〈v 2

α〉data−σ2
v

σ2
vσ

2
h〈v 2

α〉data
〈v2
α〉data > σ2

v

0 〈v2
α〉data < σ2

v

21



Linear dynamics

Time evolution of the singular values (”eigenvalues”) in the linear model:

(a) Empirical distribution of the singular

values (at the beginning, weights are

random and the distribution is

Marchenko-Pastur)
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(b) Time evolution of the strongest

singular values. The strengthening of a

singular value determines an increase in

the likelihood of the training data
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Expansion over SVD basis

(
dW

dt

)
αβ

=
∑

ij

µi,α
dwij

dt
νj,β

= δα,β
dσα
dt

+ (1− δαβ)
(
σαΩh

αβ + σβΩv
βα

)
(6)

where we have defined the generators of rotations in both µα and να
bases

Ωv
αβ(t) =

dµT
α

dt
µβ (7)

Ωh
αβ(t) =

dνT
α

dt
νβ (8)

Off-diagonal variations are related to the basis rotations, while the

diagonal dynamics correspond to eigenvalues changes.
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Update equations in SVD basis

Projecting the full learning equations on the SVD basis we obtain

(
dW

dt

)
αβ

= 〈vαhβ〉data − 〈vαhβ〉model (9)(
da

dt

)
α

= 〈vα〉data − 〈vα〉model (10)(
db

dt

)
α

= 〈hα〉data − 〈hα〉model (11)

with

vα =
∑

i

viµi,α , hα =
∑

j

hjνj,α (12)
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Naive mean-field free energy

F (mv ,mh) =
1

2

N∑
i=1

(1 + mv
i ) log(1 + mv

i ) + (1−mv
i ) log(1−mv

i )

+
1

2

M∑
j=1

(1 + mh
j ) log(1 + mh

j ) + (1−mh
j ) log(1−mh

j )

−
∑
i,j

wijm
v
i m

h
j +

N∑
i=1

aim
v
i +

M∑
j=1

bjm
h
j

' 1

2

N∑
i=1

(mv
i )2 +

1

2

M∑
j=1

(
mh

j

)2 −
∑

ij

wijm
v
i m

h
j

+
N∑

i=1

aim
v
i +

M∑
j=1

bjm
h
j (13)
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Non-linear mean-field

• Thouless-Anderson-Palmer (TAP) free energy

FTAP (mv ,mh) = + S(mv ) + S(mh)

−
∑

i

ηim
v
i −

∑
j

θjm
h
j −

∑
i,j

wijm
v
i m

h
j

+
∑
i,j

w2
ij

2

(
1−mv

i
2
)(

1−mh
j

2
)

(14)

• Replica symmetry framework

mv
α =

(
σαm

h
α − aα

)
(1− qv

α)

mh
α = (σαm

v
α − bα)

(
1− qh

α

)
mv
α = Eu,v ,r (〈vα〉) mh

α = Eu,v ,r (〈hα〉)
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Gaussian approximation

cov(mv,mh) =

 σ−2
h

σ−2
v σ−2

h −WWT
W 1

σ−2
v σ−2

h −WTW

WT 1
σ−2

v σ−2
h −WWT

σ−2
h

σ−2
v σ−2

h −WWT

 (15)

⇓

〈vαhβ〉data = σ2
hσβ〈vαvβ〉data = σ2

hσβ cov(vα, vβ) (16)

⇓

dσα
dt

= σ2
hσα

(
〈v2
α〉data −

σ2
v

1− σ2
vσ

2
hσ

2
α

)
(17)
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Linear stability

σ2
α =


〈v 2

α〉data−σ2
v

σ2
vσ

2
h〈v 2

α〉data
〈v2
α〉data > σ2

v

0 〈v2
α〉data < σ2

v

(18)

We see how the evolution of the singular values in the linear regime is

driven by the SVD modes of the training data. The strongest modes,

those above the threshold σ2
v , are selected and learnt while the modes

below threshold are damped.
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Quenched mean-field equations

Statistical Physics kicks in! The Replica trick is used to get the

mean-field equations for the non-linear regime (in Replica Symmetry

setting)

mv
α =

(
σαm

h
α − aα

)
(1− qv

α)

mh
α = (σαm

v
α − bα)

(
1− qh

α

)

mv
α = Eu,v ,r (〈vα〉) mh

α = Eu,v ,r (〈hα〉)

where qv
α, q

h
α are spin-glass order parameters

Note: averages are taken with respect to ui , vj and the noise rij . The

specific realization of the weights is not important, just their distribution

is.
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Phase diagram

From the mean-field equations we can compute the phase diagram of the

model, a more complete description with respect to the stability analysis

of the linear case:
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SVD analysis



Singular values evolution

Figure 10
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Singular values evolution

Figure 11
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Singular values evolution

Figure 12
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Singular values evolution

Figure 13
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Singular values evolution
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SVD modes

(a) SVD modes extracted from the training set

(b) The first 10 SVD modes of a RBM trained for 1 epoch

(c) Same as (b) but after a 10 epochs training
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