# Thermodynamics of Restricted Boltzmann Machines and Related Learning Dynamics 

Aurélien Decelle, Giancarlo Fissore, Cyril Furtlehner

INRIA, LRI, Université Paris-Saclay
TAU team

## Restricted Boltzmann Machines (RBM)

Task: modeling high-dimensional probability distributions of empirical data

Solution: we can use a Restricted Boltzmann Machine (RBM), a neural-network based model

Problem: neural networks are "black boxes"

## The RBM as a bipartite spin-glass

$$
H(s, \sigma)=-\sum_{i, j} s_{i} W_{i j} \sigma_{j}+\sum_{i=1}^{N_{v}} \eta_{i} s_{i}+\sum_{j=1}^{N_{h}} \theta_{j} \sigma_{j} \quad p(s, \sigma)=\frac{e^{-H(s, \sigma)}}{Z}
$$

Learn $W_{i j}$ (Maximum Likelihood)


## Linearized mean-field equations

Mean-field equation for the visible layer of the RBM:

$$
m_{i}^{v}=\operatorname{sigm}\left(\eta_{i}+\sum_{j} w_{i j} m_{j}^{h}-\sum_{j} w_{i j}\right) \quad\left(\mathbf{m}^{v}=\langle\mathbf{s}\rangle, \mathbf{m}^{h}=\langle\sigma\rangle\right)
$$

Expanding over Singular Value Decomposition (SVD) components:

$$
\begin{gathered}
w_{i j}=\sum_{\alpha} w_{\alpha} u_{i, \alpha} v_{j, \alpha} \quad m_{\alpha}^{v}=\sum_{i} u_{i, \alpha} m_{i}^{v} \\
\Downarrow \\
m_{\alpha}^{v} \simeq \frac{1}{4} w_{\alpha} m_{\alpha}^{h}
\end{gathered}
$$

Magnetizations related to strong $w_{\alpha}$ are amplified

## Dynamics \& statistical ensemble

- Dynamical evolution

$$
\frac{d w_{\alpha}}{d t}=\left\langle s_{\alpha} \sigma_{\alpha}\right\rangle_{\text {data }}-\left\langle s_{\alpha} \sigma_{\alpha}\right\rangle_{\text {model } l}, \quad s_{\alpha}=\sum_{i} s_{i} u_{i, \alpha}
$$

- We need to define a statistical ensemble

$$
\begin{gathered}
w_{i j}=\sum_{\alpha=1}^{K} w_{\alpha} u_{i, \alpha} v_{j, \alpha}+r_{i j} \\
w_{\alpha}: \text { singular values } \\
u_{i, \alpha} v_{j, \alpha}: \text { singular vectors components } \\
r_{i j}: \text { gaussian noise }
\end{gathered}
$$

Note: we average with respect to $u_{i}, v_{j}$ and the noise $r_{i j}$ keeping $s_{\alpha}, \sigma_{\alpha}$ fixed.

## Non-linear mean-field

- Thouless-Anderson-Palmer (TAP) free energy - "numerical"

$$
\begin{aligned}
F_{T A P}\left(\mathbf{m}^{\vee}, \mathbf{m}^{h}\right)= & +S\left(\mathbf{m}^{\vee}\right)+S\left(\mathbf{m}^{h}\right) \\
& -\sum_{i} \eta_{i} m_{i}^{\vee}-\sum_{j} \theta_{j} m_{j}^{h}-\sum_{i, j} w_{i j} m_{i}^{\vee} m_{j}^{h} \\
& +\sum_{i, j} \frac{w_{i j}^{2}}{2}\left(1-m_{i}^{\vee 2}\right)\left(1-m_{j}^{h^{2}}\right)
\end{aligned}
$$

- Replica symmetry framework - "theoretical"

$$
\begin{aligned}
& m_{\alpha}^{v}=\left(w_{\alpha} m_{\alpha}^{h}-\eta_{\alpha}\right)\left(1-q_{\alpha}^{v}\right) \\
& m_{\alpha}^{h}=\left(w_{\alpha} m_{\alpha}^{v}-\theta_{\alpha}\right)\left(1-q_{\alpha}^{h}\right)
\end{aligned}
$$

$$
m_{\alpha}^{v}=E_{u, v, r}\left(\left\langle s_{\alpha}\right\rangle\right) \quad m_{\alpha}^{h}=E_{u, v, r}\left(\left\langle\sigma_{\alpha}\right\rangle\right)
$$

$q_{\alpha}^{\vee}, q_{\alpha}^{h}:$ spin-glass order parameters

## Clustering interpretation

Data get clustered in the singular space, and the fixed point solutions of the mean-field equations serve as centroids

$\mathrm{X}_{1}$

(a) Samples from the training set and fixed points (in red) are plotted with respect to the strongest directions in the singular space

## Non-linear dynamics

## Theoretical



Log Likelihood / Number of fixed point


## Experimental




## Phase diagram



## Ferromagnetic phase

$$
W_{i j}=\sum_{\alpha=1}^{K} w_{\alpha} u_{i}^{\alpha} v_{j}^{\alpha}+r_{i j}
$$

Relative kurtosis: $\mathrm{k}=\mathrm{E}\left[\left(\frac{\mathrm{X}-\mu}{\sigma}\right)^{4}\right]-3=\frac{\mu_{4}}{\sigma^{4}}-3$

| Kurtosis | $\mathrm{k}<0$ | $\mathrm{k}=0$ | $\mathbf{k}>\mathbf{0}$ |
| :---: | :---: | :---: | :---: |
| Gap | $\Delta \mathrm{w}>0$ | $\Delta \mathrm{w}=0$ | $\Delta \mathrm{w}<\mathbf{0}$ |
| Distribution | Bernoulli | Gaussian | Laplace |
| Structure | Metastable <br> states | Unimodal <br> Dominant <br> state | Compositional <br> phase <br> (possibly) |



## Conclusion

Outcomes:

- comprehensive theoretical description of the model, both in linear and non-linear regimes
- precise characterization of the learning dynamics (and definition of a deterministic learning trajectory)
- assessment of the role and importance of the fixed point solutions of the mean-field equations
- clustering interpretation of the training process
- characterization of the statistical properties of the weights of the model

Perspectives:

- introducing symmetries: translational (and rotational) invariance
- dealing with lossy datasets

Thank you!

Overview of the RBM model

## Definition of the model

RBM model: a neural network structured as a a bipartite graph


Specifically:

- a layer of hidden units $h_{j}$ and a layer of visible units $v_{i}$ are present
- data are represented as configurations of the visible layer
- there are not connections among units in the same layer
- we restrict our treatment to the case of binary units $h_{i}, v_{i}=0,1$


## RBM training

- The probability of a visible configuration is given by

$$
P(\mathbf{v})=\sum_{\mathbf{h}} P(\mathbf{h}, \mathbf{v})=\frac{e^{-F_{c}(\mathbf{v})}}{Z}, \quad Z=\sum_{\mathbf{v}} e^{-F_{c}(\mathbf{v})}
$$

- We want to maximize $P(\mathbf{v})$ for the samples belonging to the training set
$\Longrightarrow$ gradient ascent over the log-likelihood $\log P(\mathbf{v})$


## Update rule

$$
\Delta \mathbf{W}=\alpha\left(\left\langle\mathbf{v h}^{T}\right\rangle_{\text {data }}-\left\langle\mathbf{v h}^{T}\right\rangle_{\text {model }}\right)
$$

Problem: the term $\langle\cdot\rangle_{\text {model }}$ is intractable
Best approximate algorithm: persistence contrastive divergence (PCD), a Monte Carlo based method

## The RBM and Statistical Physics

The RBM model is mapped to a Statistical Physics model by the definition of an energy function

$$
\begin{gathered}
E(\mathbf{h}, \mathbf{v})=-\sum_{i} a_{i} v_{i}-\sum_{j} b_{j} h_{j}-\sum_{i, j} v_{i} w_{i j} h_{j} \\
P(\mathbf{h}, \mathbf{v} ; \mathbf{W})=\frac{e^{-E(\mathbf{h}, \mathbf{v})}}{Z}
\end{gathered}
$$

This let us borrow analytical and algorithmic tools from statistical physics! In particular mean-field methods.

Remark: $w_{i j}$ are the links connecting visible and hidden units and serve as parameters of the model

## Extended Mean Field (EMF) training

- The log-likelihood can be expressed as

$$
\log P(\mathbf{v})=\log \frac{e^{-F_{c}(\mathbf{v})}}{Z}=-\overbrace{F_{c}(\mathbf{v})}^{\text {tractable }}-\underbrace{\log Z}_{\text {intractable }}
$$

- $F=\log Z$ is the free energy of the system and it can be approximated exploiting a high-temperature expansion ${ }^{1}$


## New update rule

$$
\Delta \mathbf{W}=\alpha(\left\langle\mathbf{v h}^{T}\right\rangle_{\text {data }}-\underbrace{\frac{\partial F_{T A P}\left(\tilde{\mathbf{m}}^{v}, \tilde{\mathbf{m}}^{h}\right)}{\partial w_{i j}}}_{\text {tractable }})
$$

[^0]
## EMF training

Introducing the inverse temperature $\beta$

$$
P(\mathbf{h}, \mathbf{v})=\frac{e^{-\beta E(\mathbf{h}, \mathbf{v})}}{Z}
$$

## High-T expansion

Setting $\beta \rightarrow 0$ a tractable effective free energy depending on the magnetizations is obtained: $F_{T A P}=F_{T A P}\left(\mathbf{m}^{\vee}, \mathbf{m}^{h}\right)$

Its minimization gives an approximation to $F$ :

$$
\begin{equation*}
F \simeq F_{T A P}\left(\tilde{\mathbf{m}}^{v}, \tilde{\mathbf{m}}^{h}\right),\left.\quad \frac{d F_{T A P}}{d \mathbf{m}}\right|_{\tilde{\mathbf{m}}^{v}, \tilde{\mathbf{m}}^{h}}=0 \tag{1}
\end{equation*}
$$

- magnetizations: $\mathbf{m}^{v}=\langle\mathbf{v}\rangle, \mathbf{m}^{h}=\langle\mathbf{h}\rangle$
- $\tilde{\mathbf{m}}{ }^{\vee}, \tilde{\boldsymbol{m}}^{h}$ are found by iterating to a fixed point the equations given by constraint (1)


## Effective temperature

In the context of a RBM the high-T expansion is substituted by a weak-couplings expansion ( $w_{i j}$ small) and an effective temperature is defined:

$$
T_{\text {eff }}=\frac{1}{\operatorname{Var}(\mathbf{W})}
$$



## Comparison of PCD and EMF trainings






Learning dynamics are independent on the training procedure

## Singular Value Decomposition (SVD)

SVD is the generalization of eigenmodes decomposition to rectangular matrices

$$
\mathbf{W}=\mathbf{U} \Sigma \mathbf{V}^{T}
$$

where:

- $\mathbf{U}$ is an orthogonal matrix whose columns are the left singular vectors $\mathbf{u}_{\alpha}$
- $\mathbf{V}$ is an orthogonal matrix whose columns are the right singular vectors $\mathbf{v}_{\alpha}$
- $\Sigma$ is a diagonal matrix whose elements are the singular values $\sigma_{\alpha}$


## Remark

Singular vectors $\mathbf{u}_{\alpha}$ can be visualized in pixel space

## Characterization of the modes



(a) "filtered" samples: only the first 100 modes are retained

(b) boundary adjustments: the remaining 400 modes

## A basic statistical characterization

$$
w_{i j}=\underbrace{\sum_{\alpha \in \text { bulk }} \sigma_{\alpha} u_{i, \alpha} v_{j, \alpha}}_{\text {random } \rightarrow r_{i j}}+\sum_{\alpha \in \text { outliers }} \sigma_{\alpha} u_{i, \alpha} v_{j, \alpha}
$$

## Updates dynamics

Introducing a time variable $t$ we write

$$
\begin{equation*}
w_{i j}(t)=\sum_{\alpha} \sigma_{\alpha}(t) \mu_{i, \alpha}(t) \nu_{j, \alpha}(t) \tag{2}
\end{equation*}
$$

and taking the continuous limit of the learning equations we obtain

$$
\begin{align*}
\frac{d w_{i j}}{d t} & =\left\langle v_{i} h_{j}\right\rangle_{\text {data }}-\left\langle v_{i} h_{j}\right\rangle_{\text {model }}  \tag{3}\\
\frac{d a_{i}}{d t} & =\left\langle v_{i}\right\rangle_{\text {data }}-\left\langle v_{i}\right\rangle_{\text {model }}  \tag{4}\\
\frac{d b_{j}}{d t} & =\left\langle h_{j}\right\rangle_{\text {data }}-\left\langle h_{j}\right\rangle_{\text {model }} \tag{5}
\end{align*}
$$

## Linearized dynamics

Introducing time $t$

$$
w_{i j}(t)=\sum_{\alpha} \sigma_{\alpha}(t) u_{i, \alpha}(t) v_{j, \alpha}(t)
$$

Assuming Gaussian distributions for visible and hidden nodes (with $\left.\sigma_{v}, \sigma_{h}\right)$ :

$$
\frac{d \sigma_{\alpha}}{d t}=\sigma_{h}^{2} \sigma_{\alpha}\left(\left\langle v_{\alpha}^{2}\right\rangle_{d a t a}-\frac{\sigma_{v}^{2}}{1-\sigma_{v}^{2} \sigma_{h}^{2} \sigma_{\alpha}^{2}}\right)
$$

By linear stability analysis we can find the stable fixed points

$$
\sigma_{\alpha}^{2}= \begin{cases}\frac{\left\langle v_{\alpha}^{2}\right\rangle_{d a t}-\sigma_{v}^{2}}{\sigma_{2}^{2} \sigma_{h}^{2}\left\langle\nu_{\alpha}^{2}\right\rangle_{\text {data }}} & \left\langle v_{\alpha}^{2}\right\rangle_{\text {data }}>\sigma_{v}^{2} \\ 0 & \left\langle v_{\alpha}^{2}\right\rangle_{\text {data }}<\sigma_{v}^{2}\end{cases}
$$

## Linear dynamics

Time evolution of the singular values ("eigenvalues") in the linear model:

(a) Empirical distribution of the singular values (at the beginning, weights are random and the distribution is Marchenko-Pastur)

(b) Time evolution of the strongest singular values. The strengthening of a singular value determines an increase in the likelihood of the training data

## Expansion over SVD basis

$$
\begin{align*}
\left(\frac{d \mathbf{W}}{d t}\right)_{\alpha \beta} & =\sum_{i j} \mu_{i, \alpha} \frac{d w_{i j}}{d t} \nu_{j, \beta} \\
& =\delta_{\alpha, \beta} \frac{d \sigma_{\alpha}}{d t}+\left(1-\delta_{\alpha \beta}\right)\left(\sigma_{\alpha} \Omega_{\alpha \beta}^{h}+\sigma_{\beta} \Omega_{\beta \alpha}^{v}\right) \tag{6}
\end{align*}
$$

where we have defined the generators of rotations in both $\mu_{\alpha}$ and $\nu_{\alpha}$ bases

$$
\begin{align*}
& \Omega_{\alpha \beta}^{v}(t)=\frac{d \mu_{\alpha}^{T}}{d t} \mu_{\beta}  \tag{7}\\
& \Omega_{\alpha \beta}^{h}(t)=\frac{d \nu_{\alpha}^{T}}{d t} \nu_{\beta} \tag{8}
\end{align*}
$$

Off-diagonal variations are related to the basis rotations, while the diagonal dynamics correspond to eigenvalues changes.

## Update equations in SVD basis

Projecting the full learning equations on the SVD basis we obtain

$$
\begin{align*}
\left(\frac{d \mathbf{W}}{d t}\right)_{\alpha \beta} & =\left\langle v_{\alpha} h_{\beta}\right\rangle_{\text {data }}-\left\langle v_{\alpha} h_{\beta}\right\rangle_{\text {model }}  \tag{9}\\
\left(\frac{d \mathbf{a}}{d t}\right)_{\alpha} & =\left\langle v_{\alpha}\right\rangle_{\text {data }}-\left\langle v_{\alpha}\right\rangle_{\text {model }}  \tag{10}\\
\left(\frac{d \mathbf{b}}{d t}\right)_{\alpha} & =\left\langle h_{\alpha}\right\rangle_{\text {data }}-\left\langle h_{\alpha}\right\rangle_{\text {model }} \tag{11}
\end{align*}
$$

with

$$
\begin{equation*}
v_{\alpha}=\sum_{i} v_{i} \mu_{i, \alpha}, \quad h_{\alpha}=\sum_{j} h_{j} \nu_{j, \alpha} \tag{12}
\end{equation*}
$$

## Naive mean-field free energy

$$
\begin{align*}
F\left(\mathbf{m}^{\vee}, \boldsymbol{m}^{h}\right) & =\frac{1}{2} \sum_{i=1}^{N}\left(1+m_{i}^{\vee}\right) \log \left(1+m_{i}^{\vee}\right)+\left(1-m_{i}^{\vee}\right) \log \left(1-m_{i}^{\vee}\right) \\
& +\frac{1}{2} \sum_{j=1}^{M}\left(1+m_{j}^{h}\right) \log \left(1+m_{j}^{h}\right)+\left(1-m_{j}^{h}\right) \log \left(1-m_{j}^{h}\right) \\
& -\sum_{i, j} w_{i j} m_{i}^{\vee} m_{j}^{h}+\sum_{i=1}^{N} a_{i} m_{i}^{\vee}+\sum_{j=1}^{M} b_{j} m_{j}^{h} \\
& \simeq \frac{1}{2} \sum_{i=1}^{N}\left(m_{i}^{\vee}\right)^{2}+\frac{1}{2} \sum_{j=1}^{M}\left(m_{j}^{h}\right)^{2}-\sum_{i j} w_{i j} m_{i}^{\vee} m_{j}^{h} \\
& +\sum_{i=1}^{N} a_{i} m_{i}^{\vee}+\sum_{j=1}^{M} b_{j} m_{j}^{h} \tag{13}
\end{align*}
$$

## Non-linear mean-field

- Thouless-Anderson-Palmer (TAP) free energy

$$
\begin{align*}
F_{T A P}\left(\mathbf{m}^{\vee}, \mathbf{m}^{h}\right)= & +S\left(\mathbf{m}^{v}\right)+S\left(\mathbf{m}^{h}\right) \\
& -\sum_{i} \eta_{i} m_{i}^{v}-\sum_{j} \theta_{j} m_{j}^{h}-\sum_{i, j} w_{i j} m_{i}^{v} m_{j}^{h} \\
& +\sum_{i, j} \frac{w_{i j}^{2}}{2}\left(1-m_{i}^{v^{2}}\right)\left(1-m_{j}^{h^{2}}\right) \tag{14}
\end{align*}
$$

- Replica symmetry framework

$$
\begin{gathered}
m_{\alpha}^{\vee}=\left(\sigma_{\alpha} m_{\alpha}^{h}-a_{\alpha}\right)\left(1-q_{\alpha}^{\vee}\right) \\
m_{\alpha}^{h}=\left(\sigma_{\alpha} m_{\alpha}^{v}-b_{\alpha}\right)\left(1-q_{\alpha}^{h}\right) \\
m_{\alpha}^{\vee}=E_{u, v, r}\left(\left\langle v_{\alpha}\right\rangle\right) \quad m_{\alpha}^{h}=E_{u, v, r}\left(\left\langle h_{\alpha}\right\rangle\right)
\end{gathered}
$$

## Gaussian approximation

$$
\begin{align*}
& \Downarrow \\
& \left\langle v_{\alpha} h_{\beta}\right\rangle_{\text {data }}=\sigma_{h}^{2} \sigma_{\beta}\left\langle v_{\alpha} v_{\beta}\right\rangle_{\text {data }}=\sigma_{h}^{2} \sigma_{\beta} \operatorname{cov}\left(v_{\alpha}, v_{\beta}\right)  \tag{16}\\
& \Downarrow \\
& \frac{d \sigma_{\alpha}}{d t}=\sigma_{h}^{2} \sigma_{\alpha}\left(\left\langle v_{\alpha}^{2}\right\rangle_{\text {data }}-\frac{\sigma_{v}^{2}}{1-\sigma_{v}^{2} \sigma_{h}^{2} \sigma_{\alpha}^{2}}\right) \tag{17}
\end{align*}
$$

## Linear stability

$$
\sigma_{\alpha}^{2}= \begin{cases}\frac{\left\langle v_{\alpha}^{2}\right\rangle_{\text {data }}-\sigma_{v}^{2}}{\sigma_{v}^{2} \sigma_{h}^{2}\left\langle v_{\alpha}^{2}\right\rangle_{\text {data }}} & \left\langle v_{\alpha}^{2}\right\rangle_{\text {data }}>\sigma_{v}^{2}  \tag{18}\\ 0 & \left\langle v_{\alpha}^{2}\right\rangle_{\text {data }}<\sigma_{v}^{2}\end{cases}
$$

We see how the evolution of the singular values in the linear regime is driven by the SVD modes of the training data. The strongest modes, those above the threshold $\sigma_{v}^{2}$, are selected and learnt while the modes below threshold are damped.

## Quenched mean-field equations

Statistical Physics kicks in! The Replica trick is used to get the mean-field equations for the non-linear regime (in Replica Symmetry setting)

$$
\begin{gathered}
m_{\alpha}^{\vee}=\left(\sigma_{\alpha} m_{\alpha}^{h}-a_{\alpha}\right)\left(1-q_{\alpha}^{\vee}\right) \\
m_{\alpha}^{h}=\left(\sigma_{\alpha} m_{\alpha}^{v}-b_{\alpha}\right)\left(1-q_{\alpha}^{h}\right) \\
m_{\alpha}^{\vee}=E_{u, v, r}\left(\left\langle v_{\alpha}\right\rangle\right) \quad m_{\alpha}^{h}=E_{u, v, r}\left(\left\langle h_{\alpha}\right\rangle\right)
\end{gathered}
$$

where $q_{\alpha}^{v}, q_{\alpha}^{h}$ are spin-glass order parameters
Note: averages are taken with respect to $u_{i}, v_{j}$ and the noise $r_{i j}$. The specific realization of the weights is not important, just their distribution is.

## Phase diagram

From the mean-field equations we can compute the phase diagram of the model, a more complete description with respect to the stability analysis of the linear case:


## SVD analysis

## Singular values evolution

Random initialization


## Singular values evolution

Epoch 1 - Batch 10


## Singular values evolution

Epoch 1 - Batch 60


## Singular values evolution

Epoch 1 - Batch 120


## Singular values evolution



## SVD modes


(a) SVD modes extracted from the training set

(b) The first 10 SVD modes of a RBM trained for 1 epoch



[^0]:    ${ }^{1}$ A. Georges, J. S. Yedidia,
    "How to expand around mean-field theory using high-temperature expansions", Journal of Physics A: Mathematical and General, Volume 24, Number 9, 1991.

