Thermodynamics of Restricted Boltzmann Machines and Related Learning Dynamics

Aurélien Decelle, Giancarlo Fissore, Cyril Furtlehner

INRIA, LRI, Université Paris-Saclay TAU team **Task:** modeling high-dimensional probability distributions of empirical data

Solution: we can use a Restricted Boltzmann Machine (RBM), a neural-network based model

Problem: neural networks are "black boxes"

The RBM as a bipartite spin-glass

$$H(s,\sigma) = -\sum_{i,j} s_i W_{ij} \sigma_j + \sum_{i=1}^{N_v} \eta_i s_i + \sum_{j=1}^{N_h} \theta_j \sigma_j \qquad p(s,\sigma) = \frac{e^{-H(s,\sigma)}}{Z}$$

Linearized mean-field equations

Mean-field equation for the visible layer of the RBM:

$$m_i^{\mathbf{v}} = sigm\left(\eta_i + \sum_j w_{ij}m_j^h - \sum_j w_{ij}
ight) \qquad \left(\mathbf{m}^{\mathbf{v}} = \langle \mathbf{s} \rangle, \mathbf{m}^h = \langle \sigma \rangle
ight)$$

Expanding over Singular Value Decomposition (SVD) components:

$$w_{ij} = \sum_{\alpha} w_{\alpha} u_{i,\alpha} v_{j,\alpha} \qquad m_{\alpha}^{v} = \sum_{i} u_{i,\alpha} m_{i}^{v}$$

$$\Downarrow$$

$$m_{\alpha}^{v} \simeq \frac{1}{4} w_{\alpha} m_{\alpha}^{h}$$

Magnetizations related to strong w_{α} are amplified

• Dynamical evolution

$$rac{dw_{lpha}}{dt} = \langle s_{lpha} \sigma_{lpha}
angle_{data} - \langle s_{lpha} \sigma_{lpha}
angle_{model}, \quad s_{lpha} = \sum_{i} s_{i} u_{i, lpha}$$

• We need to define a statistical ensemble

$$w_{ij} = \sum_{\alpha=1}^{K} w_{\alpha} u_{i,\alpha} v_{j,\alpha} + r_{ij}$$

$$w_{\alpha}$$
: singular values
 $u_{i,\alpha}v_{j,\alpha}$: singular vectors components
 r_{ij} : gaussian noise

Note: we average with respect to u_i , v_j and the noise r_{ij} keeping s_{α} , σ_{α} fixed.

Non-linear mean-field

• Thouless-Anderson-Palmer (TAP) free energy - "numerical"

$$F_{TAP}(\mathbf{m}^{v}, \mathbf{m}^{h}) = + S(\mathbf{m}^{v}) + S(\mathbf{m}^{h})$$
$$- \sum_{i} \eta_{i} m_{i}^{v} - \sum_{j} \theta_{j} m_{j}^{h} - \sum_{i,j} w_{ij} m_{i}^{v} m_{j}^{h}$$
$$+ \sum_{i,i} \frac{w_{ij}^{2}}{2} \left(1 - m_{i}^{v^{2}}\right) \left(1 - m_{j}^{h^{2}}\right)$$

• Replica symmetry framework - "theoretical"

$$\begin{split} m_{\alpha}^{\mathsf{v}} &= \left(w_{\alpha}m_{\alpha}^{\mathsf{h}} - \eta_{\alpha}\right)\left(1 - q_{\alpha}^{\mathsf{v}}\right)\\ m_{\alpha}^{\mathsf{h}} &= \left(w_{\alpha}m_{\alpha}^{\mathsf{v}} - \theta_{\alpha}\right)\left(1 - q_{\alpha}^{\mathsf{h}}\right) \end{split}$$

$$m_{\alpha}^{v} = E_{u,v,r}(\langle s_{\alpha} \rangle) \qquad m_{\alpha}^{h} = E_{u,v,r}(\langle \sigma_{\alpha} \rangle)$$
$$q_{\alpha}^{v}, q_{\alpha}^{h}: \text{ spin-glass order parameters}$$

Clustering interpretation

Data get clustered in the singular space, and the fixed point solutions of the mean-field equations serve as centroids

(a) Samples from the training set and fixed points (in red) are plotted with respect to the strongest directions in the singular space

Non-linear dynamics

Theoretical

Ferromagnetic phase

Conclusion

Outcomes:

- comprehensive theoretical description of the model, both in linear and non-linear regimes
- precise characterization of the learning dynamics (and definition of a deterministic learning trajectory)
- assessment of the role and importance of the fixed point solutions of the mean-field equations
- clustering interpretation of the training process
- characterization of the statistical properties of the weights of the model

Perspectives:

- introducing symmetries: translational (and rotational) invariance
- dealing with lossy datasets

Thank you!

Overview of the RBM model

Definition of the model

RBM model: a neural network structured as a a bipartite graph

Specifically:

- a layer of hidden units h_j and a layer of visible units v_i are present
- data are represented as configurations of the visible layer
- there are not connections among units in the same layer
- we restrict our treatment to the case of binary units h_i , $v_i = 0, 1$

RBM training

• The probability of a visible configuration is given by

$$P(\mathbf{v}) = \sum_{\mathbf{h}} P(\mathbf{h}, \mathbf{v}) = \frac{e^{-F_c(\mathbf{v})}}{Z}, \qquad Z = \sum_{\mathbf{v}} e^{-F_c(\mathbf{v})}$$

 We want to maximize P(v) for the samples belonging to the training set

 \implies gradient ascent over the log-likelihood log $P(\mathbf{v})$

Update rule

$$\Delta \mathbf{W} = \alpha \left(\langle \mathbf{v} \mathbf{h}^{\mathsf{T}} \rangle_{\textit{data}} - \langle \mathbf{v} \mathbf{h}^{\mathsf{T}} \rangle_{\textit{model}} \right)$$

Problem: the term $\langle \cdot \rangle_{model}$ is intractable

Best approximate algorithm: *persistence contrastive divergence* (PCD), a Monte Carlo based method

The **RBM model** is mapped to a **Statistical Physics** model by the definition of an *energy function*

$$E(\mathbf{h}, \mathbf{v}) = -\sum_{i} a_{i} v_{i} - \sum_{j} b_{j} h_{j} - \sum_{i,j} v_{i} w_{ij} h_{j}$$
$$P(\mathbf{h}, \mathbf{v}; \mathbf{W}) = \frac{e^{-E(\mathbf{h}, \mathbf{v})}}{Z}$$

This let us borrow **analytical** and **algorithmic tools** from statistical physics! In particular mean-field methods.

Remark: w_{ij} are the links connecting visible and hidden units and serve as parameters of the model

Extended Mean Field (EMF) training

• The log-likelihood can be expressed as

$$\log P(\mathbf{v}) = \log \frac{e^{-F_c(\mathbf{v})}}{Z} = -\overbrace{F_c(\mathbf{v})}^{\text{tractable}} - \underbrace{\log Z}_{\text{intractable}}$$

• *F* = log *Z* is the *free energy* of the system and it can be approximated exploiting a high-temperature expansion¹

¹A. Georges, J. S. Yedidia,

"How to expand around mean-field theory using high-temperature expansions", Journal of Physics A: Mathematical and General, Volume 24, Number 9, 1991.

EMF training

Introducing the inverse temperature β

$$P(\mathbf{h},\mathbf{v}) = \frac{e^{-\boldsymbol{\beta} E(\mathbf{h},\mathbf{v})}}{Z}$$

High-T expansion

Setting $\beta \to 0$ a **tractable** effective free energy depending on the magnetizations is obtained: $F_{TAP} = F_{TAP}(\mathbf{m}^v, \mathbf{m}^h)$

Its minimization gives an approximation to F:

$$F \simeq F_{TAP}(\tilde{\mathbf{m}}^{\nu}, \tilde{\mathbf{m}}^{h}), \qquad \left. \frac{dF_{TAP}}{d\mathbf{m}} \right|_{\tilde{\mathbf{m}}^{\nu}, \tilde{\mathbf{m}}^{h}} = 0$$
(1)

- magnetizations: $\mathbf{m}^{\mathbf{v}}=\langle\mathbf{v}
 angle, \mathbf{m}^{h}=\langle\mathbf{h}
 angle$
- *m˜^v*, *m˜^h* are found by iterating to a fixed point the equations given by constraint (1)

Effective temperature

In the context of a RBM the high-T expansion is substituted by a **weak-couplings expansion** (w_{ij} small) and an *effective temperature* is defined:

$$T_{eff} = rac{1}{Var(\mathbf{W})}$$

Comparison of PCD and EMF trainings

Learning dynamics are independent on the training procedure

SVD is the generalization of eigenmodes decomposition to rectangular matrices

$\mathbf{W} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathcal{T}}$

where:

- U is an orthogonal matrix whose columns are the *left singular* vectors u_α
- V is an orthogonal matrix whose columns are the *right singular* vectors v_α
- Σ is a diagonal matrix whose elements are the singular values σ_{lpha}

Remark

Singular vectors \mathbf{u}_{α} can be visualized in pixel space

Characterization of the modes

A basic statistical characterization $w_{ij} = \underbrace{\sum_{\alpha \in bulk} \sigma_{\alpha} u_{i,\alpha} v_{j,\alpha}}_{random \rightarrow r_{ij}} + \sum_{\alpha \in outliers} \sigma_{\alpha} u_{i,\alpha} v_{j,\alpha}$ Introducing a time variable t we write

$$w_{ij}(t) = \sum_{\alpha} \sigma_{\alpha}(t) \mu_{i,\alpha}(t) \nu_{j,\alpha}(t)$$
(2)

and taking the continuous limit of the learning equations we obtain

$$\frac{dw_{ij}}{dt} = \langle v_i h_j \rangle_{data} - \langle v_i h_j \rangle_{model}$$
(3)

$$\frac{da_i}{dt} = \langle v_i \rangle_{data} - \langle v_i \rangle_{model} \tag{4}$$

$$\frac{db_j}{dt} = \langle h_j \rangle_{data} - \langle h_j \rangle_{model}$$
(5)

Linearized dynamics

Introducing time t

$$w_{ij}(t) = \sum_{\alpha} \sigma_{\alpha}(t) u_{i,\alpha}(t) v_{j,\alpha}(t)$$

Assuming Gaussian distributions for visible and hidden nodes (with σ_v, σ_h):

$$\frac{d\sigma_{\alpha}}{dt} = \sigma_{h}^{2}\sigma_{\alpha} \left(\langle v_{\alpha}^{2} \rangle_{data} - \frac{\sigma_{v}^{2}}{1 - \sigma_{v}^{2}\sigma_{h}^{2}\sigma_{\alpha}^{2}} \right)$$

By linear stability analysis we can find the stable fixed points

$$\sigma_{\alpha}^{2} = \begin{cases} \frac{\langle v_{\alpha}^{2} \rangle_{data} - \sigma_{v}^{2}}{\sigma_{v}^{2} \sigma_{h}^{2} \langle v_{\alpha}^{2} \rangle_{data}} & \langle v_{\alpha}^{2} \rangle_{data} > \sigma_{v}^{2} \\ 0 & \langle v_{\alpha}^{2} \rangle_{data} < \sigma_{v}^{2} \end{cases}$$

Linear dynamics

Time evolution of the singular values ("eigenvalues") in the linear model:

(b) Time evolution of the strongest singular values. The strengthening of a singular value determines an increase in the likelihood of the training data

Expansion over SVD basis

$$\left(\frac{d\mathbf{W}}{dt}\right)_{\alpha\beta} = \sum_{ij} \mu_{i,\alpha} \frac{dw_{ij}}{dt} \nu_{j,\beta}$$

$$= \delta_{\alpha,\beta} \frac{d\sigma_{\alpha}}{dt} + (1 - \delta_{\alpha\beta}) \left(\sigma_{\alpha} \Omega^{h}_{\alpha\beta} + \sigma_{\beta} \Omega^{v}_{\beta\alpha}\right)$$
(6)

where we have defined the generators of rotations in both μ_{α} and ν_{α} bases

$$\Omega_{\alpha\beta}^{\nu}(t) = \frac{d\mu_{\alpha}^{T}}{dt}\mu_{\beta}$$

$$\Omega_{\alpha\beta}^{h}(t) = \frac{d\nu_{\alpha}^{T}}{dt}\nu_{\beta}$$
(8)

Off-diagonal variations are related to the basis rotations, while the diagonal dynamics correspond to eigenvalues changes.

Update equations in SVD basis

Projecting the full learning equations on the SVD basis we obtain

$$\left(\frac{d\mathbf{W}}{dt}\right)_{\alpha\beta} = \langle v_{\alpha}h_{\beta}\rangle_{data} - \langle v_{\alpha}h_{\beta}\rangle_{model} \tag{9}$$

$$\left(\frac{d\mathbf{a}}{dt}\right)_{\alpha} = \langle \mathbf{v}_{\alpha} \rangle_{data} - \langle \mathbf{v}_{\alpha} \rangle_{model} \tag{10}$$

$$\left(\frac{d\mathbf{b}}{dt}\right)_{\alpha} = \langle h_{\alpha} \rangle_{data} - \langle h_{\alpha} \rangle_{model} \tag{11}$$

with

$$v_{\alpha} = \sum_{i} v_{i} \mu_{i,\alpha}, \qquad h_{\alpha} = \sum_{j} h_{j} \nu_{j,\alpha}$$
 (12)

Naive mean-field free energy

$$F(\mathbf{m}^{v}, \mathbf{m}^{h}) = \frac{1}{2} \sum_{i=1}^{N} (1 + m_{i}^{v}) \log(1 + m_{i}^{v}) + (1 - m_{i}^{v}) \log(1 - m_{i}^{v}) + \frac{1}{2} \sum_{j=1}^{M} (1 + m_{j}^{h}) \log(1 + m_{j}^{h}) + (1 - m_{j}^{h}) \log(1 - m_{j}^{h}) - \sum_{i,j} w_{ij} m_{i}^{v} m_{j}^{h} + \sum_{i=1}^{N} a_{i} m_{i}^{v} + \sum_{j=1}^{M} b_{j} m_{j}^{h} \simeq \frac{1}{2} \sum_{i=1}^{N} (m_{i}^{v})^{2} + \frac{1}{2} \sum_{j=1}^{M} (m_{j}^{h})^{2} - \sum_{ij} w_{ij} m_{i}^{v} m_{j}^{h} + \sum_{i=1}^{N} a_{i} m_{i}^{v} + \sum_{j=1}^{M} b_{j} m_{j}^{h}$$
(13)

Non-linear mean-field

• Thouless-Anderson-Palmer (TAP) free energy

$$F_{TAP}(\mathbf{m}^{v}, \mathbf{m}^{h}) = + S(\mathbf{m}^{v}) + S(\mathbf{m}^{h}) - \sum_{i} \eta_{i} m_{i}^{v} - \sum_{j} \theta_{j} m_{j}^{h} - \sum_{i,j} w_{ij} m_{i}^{v} m_{j}^{h} + \sum_{i,j} \frac{w_{ij}^{2}}{2} \left(1 - m_{i}^{v2}\right) \left(1 - m_{j}^{h2}\right)$$
(14)

• Replica symmetry framework

$$\begin{split} m_{\alpha}^{\mathsf{v}} &= \left(\sigma_{\alpha}m_{\alpha}^{\mathsf{h}} - \mathsf{a}_{\alpha}\right)\left(1 - q_{\alpha}^{\mathsf{v}}\right) \\ m_{\alpha}^{\mathsf{h}} &= \left(\sigma_{\alpha}m_{\alpha}^{\mathsf{v}} - \mathsf{b}_{\alpha}\right)\left(1 - q_{\alpha}^{\mathsf{h}}\right) \end{split}$$

$$m_{\alpha}^{\nu} = E_{u,\nu,r}\left(\langle v_{\alpha} \rangle\right) \qquad m_{\alpha}^{h} = E_{u,\nu,r}\left(\langle h_{\alpha} \rangle\right)$$

Gaussian approximation

$$\operatorname{cov}(\mathbf{m}^{\mathsf{v}}, \mathbf{m}^{\mathsf{h}}) = \begin{pmatrix} \frac{\sigma_{h}^{-2}}{\sigma_{v}^{-2}\sigma_{h}^{-2} - \mathsf{W}\mathsf{W}^{\mathsf{T}}} & \mathsf{W} \frac{1}{\sigma_{v}^{-2}\sigma_{h}^{-2} - \mathsf{W}^{\mathsf{T}}\mathsf{W}} \\ \mathsf{W}^{\mathsf{T}} \frac{1}{\sigma_{v}^{-2}\sigma_{h}^{-2} - \mathsf{W}\mathsf{W}^{\mathsf{T}}} & \frac{\sigma_{h}}{\sigma_{v}^{-2}\sigma_{h}^{-2} - \mathsf{W}\mathsf{W}^{\mathsf{T}}} \end{pmatrix}$$
(15)

$$\langle \mathbf{v}_{\alpha}\mathbf{h}_{\beta}\rangle_{data} = \sigma_{h}^{2}\sigma_{\beta}\langle \mathbf{v}_{\alpha}\mathbf{v}_{\beta}\rangle_{data} = \sigma_{h}^{2}\sigma_{\beta}\operatorname{cov}(\mathbf{v}_{\alpha},\mathbf{v}_{\beta})$$
(16)

 \Downarrow

$$\frac{d\sigma_{\alpha}}{dt} = \sigma_{h}^{2}\sigma_{\alpha} \left(\langle v_{\alpha}^{2} \rangle_{data} - \frac{\sigma_{v}^{2}}{1 - \sigma_{v}^{2}\sigma_{h}^{2}\sigma_{\alpha}^{2}} \right)$$
(17)

$$\sigma_{\alpha}^{2} = \begin{cases} \frac{\langle v_{\alpha}^{2} \rangle_{data} - \sigma_{\nu}^{2}}{\sigma_{\nu}^{2} \sigma_{h}^{2} \langle v_{\alpha}^{2} \rangle_{data}} & \langle v_{\alpha}^{2} \rangle_{data} > \sigma_{\nu}^{2} \\ 0 & \langle v_{\alpha}^{2} \rangle_{data} < \sigma_{\nu}^{2} \end{cases}$$
(18)

We see how the evolution of the singular values in the linear regime is driven by the SVD modes of the training data. The strongest modes, those above the threshold σ_{ν}^2 , are selected and learnt while the modes below threshold are damped.

Quenched mean-field equations

Statistical Physics kicks in! The **Replica trick** is used to get the mean-field equations for the non-linear regime (in Replica Symmetry setting)

$$\begin{split} m_{\alpha}^{\mathsf{v}} &= \left(\sigma_{\alpha}m_{\alpha}^{\mathsf{h}} - \mathsf{a}_{\alpha}\right)\left(1 - q_{\alpha}^{\mathsf{v}}\right)\\ m_{\alpha}^{\mathsf{h}} &= \left(\sigma_{\alpha}m_{\alpha}^{\mathsf{v}} - \mathsf{b}_{\alpha}\right)\left(1 - q_{\alpha}^{\mathsf{h}}\right) \end{split}$$

$$m_{\alpha}^{\nu} = E_{u,\nu,r}\left(\langle v_{\alpha} \rangle\right) \qquad m_{\alpha}^{h} = E_{u,\nu,r}\left(\langle h_{\alpha} \rangle\right)$$

where $q_{\alpha}^{\nu}, q_{\alpha}^{h}$ are spin-glass order parameters

Note: averages are taken with respect to u_i , v_j and the noise r_{ij} . The specific realization of the weights is not important, just their distribution is.

Phase diagram

From the mean-field equations we can compute the phase diagram of the model, a more complete description with respect to the stability analysis of the linear case:

SVD analysis

SVD modes

(a) SVD modes extracted from the training set

(b) The first 10 SVD modes of a RBM trained for 1 epoch

